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ABSTRACT
Dynamic taint analysis is a popular analysis technique which tracks
the propagation of specific values while a program executes. To
this end, a taint label is attached to these values and is dynamically
propagated to any values derived from them. Frequent application
of this analysis technique in many fields has led to the develop-
ment of general-purpose analysis platforms with taint propagation
capabilities. However, these platforms generally limit analysis devel-
opers to a specific implementation language, to specific propagation
semantics or to specific taint label representations.

In this paper we present label-defined dynamic taint analysis,
a language-agnostic approach for specifying the properties of a
dynamic taint analysis in terms of propagated taint labels. This ap-
proach enables analysis platforms to support arbitrary adaptations
to these properties by delegating propagation decisions to propa-
gated taint labels and thus to provide more flexibility to analysis
developers than other analysis platforms. We implemented this ap-
proach in TruffleTaint, aGraalVM-based taint analysis platform, and
integrated it with GraalVM’s language interoperability and tooling
support. We further integrated our approach with GraalVM’s per-
formance optimizations. Our performance evaluation shows that
label-defined taint analysis can reach peak performance similar to
that of equivalent engine-integrated taint analyses. In addition to
supporting the convenient reimplementation of existing dynamic
taint analyses, our approach enables new capabilities for these anal-
yses. It also enabled us to implement a novel tooling infrastructure
for analysis developers as well as tooling support for end users.
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• Security and privacy→ Information flow control; • Software
and its engineering→ Runtime environments.
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1 INTRODUCTION
Dynamic taint analysis [31] is a program analysis technique in
which a taint label is attached to specific data in order to dynam-
ically track its propagation and detect its use at specific program
locations. Such a taint label is often just a distinct flag, but may
also be a custom-defined object. Dynamic taint analysis has seen
applications in, among other fields, program vulnerability detec-
tion [7, 27, 29], reverse engineering [12, 35], debugging [11] and
testing [8]. Because dynamic taint analysis is so widely applica-
ble, analysis platforms with generic taint propagation capabilities
emerged to support implementations of concrete applications of
it [2, 15, 24, 25]. Such dynamic taint analysis applications select the
properties of dynamic taint analysis according to their analysis
goal. These properties include (1) which data to mark as tainted,
(2) the representation of a taint label, (3) the semantics of taint
propagation, and (4) where to check for tainted values and how to
react to them there. However, current analysis platforms generally
have limitations on which of these properties can be adapted by
analysis developers.

In this paper, we present label-defined dynamic taint analysis,
a new approach for implementing dynamic taint analysis. In this
approach, the analysis platform provides the mechanics of attaching
taint labels to values but delegates propagation decisions to the
propagated taint labels. Our approach allows analysis developers
detailed control over all taint analysis properties without requiring
them to change the analysis engine. Any object can act as a taint
label and can encode these properties by providing a particular
interface. The analysis engine invokes functions of this interface
with contextual information to request decisions for the label’s
propagation. We designed this interface to be language-agnostic
with regard to both analysis implementation and targeted programs.
While our approach is not limited to managed runtimes, it can
particularly benefit from performance optimizations such runtimes
are capable of.

We implemented label-defined dynamic taint analysis in Truffle-
Taint, aGraalVM-based platformwith taint propagation capabilities
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for multiple languages [25]. By leveraging both performance op-
timizations that GraalVM is already capable of and speculative
optimizations for taint propagation that we presented in previ-
ous work [26], TruffleTaint allows for label-defined taint analyses
which achieve nearly the same performance as equivalent engine-
integrated analyses. TruffleTaint can also support analysis imple-
mentations in arbitrary object-oriented languages and is integrated
with GraalVM’s tooling infrastructure to support such implemen-
tations, e.g., through debugging support. While performance and
analysis complexity are conflicting goals, our benchmark results
show that our approach supports both and leaves prioritizing be-
tweem them to analysis developers. Based on TruffleTaint we reim-
plemented existing taint analysis applications, but our approach
also enabled us to build novel tooling support for both analysis
developers and end users.

1.1 Related Work
While many taint analysis platforms offer some degree of customiza-
tion with regard to the properties of the dynamic taint analysis
they implement, this customizeability can be severly limited. On
some platforms only the sources of tainted values or the locations
where tainted values are reacted to and the kind of reaction can
be configured. Such platforms include Minemu [6], LIFT [30], Ich-
naea [23], TaintCheck [29], and jsflow [18]. These analysis engines
implement specific taint analysis applications well. However, to
implement other taint analysis applications on these engines, anal-
ysis developers would need to change them. Analysis engines that
support label-defined dynamic taint analysis instead allow these
applications to be implemented without engine modifications.

The LLVM DataFlowSanitizer (DFSan) [2], DECAF++ [13], Dy-
Tan [10] and libDFT [24] only support bit vectors of various sizes as
taint labels and only support binary OR as logic for their merging.
Phosphor [20] and Taint Rabbit [15] instead support custom-defined
data structures as taint labels and custom logic for merging them.
None of these platforms, however, allow control over the semantics
of taint propagation, i.e., over when labels are merged or where
they are propagated to. However, propagation semantics have a
profound impact on the correctness and soundness of taint prop-
agation, which has encouraged research into their improvement,
e.g., by Slowinska et al. [32], Araujo et al. [5] and Hough et al. [19].
DFSan and DyTan offer select configuration options for their prop-
agation semantics. DECAF++ and libDFT, which both target native
code, enable analysis developers to manually specify the code that
particular assembly instructions are instrumented with for taint
propagation. While this enables analysis developers to arbitrarily
change the propagation semantics, these engines still only support
bit vectors as taint labels. Label-defined dynamic taint analysis both
neccessarily supports custom-defined taint labels and provides anal-
ysis developers with full control over propagation semantics. It even
enables the implementation of dynamic taint analysis applications
that can be configured with a propagation semantics.

ALDA [9] is a specification language for dynamic analyses. It
provides efficient shadow storage that can be used to implement
arbitrary dynamic taint analysis applications. Similar to our ap-
proach, it takes advantage of joint compilation of analysis code
and instrumented program, but requires explicit allocation and

management of shadow storage. Our approach, in contrast, allows
analysis specification in arbitrary object-oriented languages and
to take advantage of rich tooling infrastructure available to these
languages.

Similar to our approach, Augur [4] delegates propagation deci-
sions to an analysis specification and provides context information
for making these decision. However, Augur is designed specifi-
cally for JavaScript while we designed label-defined dynamic taint
analysis to be language-independent. In contrast to Augur, we also
encode analysis properties within taint labels rather than as a mono-
lithic specification and we provide both performance optimizations
and taint analysis applications that take advantage of this fact.

1.2 Contributions
This paper makes the following contributions:

• A language-agnostic approach for specifying the properties
of a dynamic taint analysis within propagated taint labels
(Section 4)

• An implementation of this approach in TruffleTaint and in-
tegration with the platform’s performance optimizations,
language support and tooling (Section 5)

• Adaptations of existing dynamic taint analysis applications
and novel tooling infrastructure enabled by our approach
(Section 6)

2 BACKGROUND
A taint analysis is characterized by its selection of taint sources,
taint labels, propagation semantics, and taint sinks. A taint analysis
platform, which we also refer to as analysis engine, provides taint
propagation capability and implements shadow storage, i.e., separate
memory for storing the taint labels of the values in the instrumented
program’s memory.

2.1 Properties of Taint Analysis
Taint sources and sinks are locations in a program that produce
or consume values whose propagation the analysis needs to track.
Taint sources are instrumented by the analysis engine to attach
a taint label to any values originating from them. Common taint
sources include functions that read data from the network, filesys-
tem, or user input. However, a more specialized analysis may re-
quire more fine-grained access, e.g., to track the propagation of
values resulting from an arithmetic overflow. Similarly, taint sinks
are instrumented to perform certain actions when they consume
tainted values. For example, Neon [38] taints sensitive user data and
instruments system calls to automatically encrypt this data before
transmitting it over a network, TaintCheck [29] can taint user input
and instrument the printf function to abort execution before a user-
provided format string could potentially trigger a code injection
vulnerability, and Penumbra [11] taints data from different program
inputs with different labels to report which inputs cause a software
defect at a specific statement in a program. While many taint anal-
ysis platforms restrict taint sources and sinks to specific places,
our approach offers greater flexibility by allowing for conditional
taint sources based on run-time conditions. For example, one can
implement a taint source that only marks values from arithmetic
operations as tainted if they resulted from an overflow.
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1 var a = /* tainted */;

2 var b = a + 1 // explicit data flow

3 var c = 1;

4 if (a == 0)

5 c = 2; // implicit data flow

Figure 1: Taint propagation example.

Taint labels are metadata attached to run-time values to mark
them as tainted. Many analysis platforms only support single bits or
fixed-size bit vectors as taint labels so that they can implement the
merging of multiple labels efficiently using a binary OR. However,
other platforms sacrifice this advantage in favor of arbitrary objects
as taint labels with user-defined semantics for merging multiple
taint labels. As shown in Section 5.1 shows that label-defined taint
analysis can support both performance and analysis capability.

A propagation semantics defines the rules for propagating the
labels of tainted values to values derived from them. For example,
the result of a binary arithmetic operation, like the addition shown
in line 2 of Figure 1, is usually tainted with a combination of its
inputs’ taint labels. However, libdft, for instance, extends this rule
and defines the result of a subtraction as untainted if both operands
are read from the same memory location and are therefore known
to be equal [24]. Araujo et al. [5] similarly differ from common
propagation semantics by not attaching the taint labels of mem-
ory references to values loaded via them. Some taint engines also
consider implicit data flows, which arise from control flow, in their
propagation semantics. In Figure 1 the value of b is tainted because
it is computed from the tainted value stored in a. In contrast, there
is no such explicit data flow from a to c. Instead, the value of c
implicitly depends on the value of a because the assignment in line
5 is only executed if a holds a particular value. A purely dynamic
taint engine can support implicit data flows by storing the taint
labels of values used in control flow decisions and attaching them
to all values produced in conditionally executed code [10].

2.2 Analysis Platform
GraalVM [37] is a polyglot virtual machine that can run programs
implemented in, e.g., JavaScript or LLVM-based languages. It con-
tains a framework, Truffle, for implementing language-specific run-
times. Truffle-based runtimes support language-level program in-
strumentation [14] and can interact to support interoperability
between code of multiple languages in the same program [17].
GraalVM contains such runtimes for several languages as well as a
debugger and a profiler based on Truffle’s instrumentation support.

TruffleTaint is a GraalVM-based dynamic taint analysis platform.
It leverages Truffle’s instrumentation support provide capabilities
for propagating taint at language-level in and between multiple
languages [25]. TruffleTaint uses speculative optimization and dy-
namic compilation to reduce its performance overhead [26].

3 MOTIVATION
Since applications based on taint analysis can have specific require-
ments for particular analysis properties, a generic taint analysis

platform ought to be flexible with respect to these properties. Nev-
ertheless, most analysis platforms restrict their configurability due
to performance concerns. For example, supporting only up to eight
distinct taint labels enables DFSan [2] to represent such a label as a
bit vector and thus to use a binary OR to merge labels efficiently.
Similarly, DFSan and Taint Rabbit do not support implicit data
flows. Such limitations preclude a platform from supporting taint
analysis applications that require more taint labels or reduce their
effectiveness for certain programs. Though analysis developers
could extend these platforms, the need for work that is orthogonal
to implementing analyses themselves would defeat the point of a
generic taint analysis platform. Moreover, the need for platform ver-
satility can outweigh the need for improved performance. For this
reason, TruffleTaint avoids artificial limitations in favor of analysis
capability support.

One such versatility is the analysis implementation language.
Since TruffleTaint is built on top of a polyglot virtual machine and
targets multiple languages we designed our approach for analysis
specification to be language-agnostic with respect to both analysis
implementation language and targeted language. Analysis devel-
opers may prefer to program in the language they target or in a
high-level language more suited for rapid development. However,
current taint analysis platforms typically restrict the analysis imple-
mentation language either to the language they are implemented
in or to a high-level specification language.

We integrated TruffleTaint with GraalVM’s tooling support to
provide analysis developers with means to profile and debug their
taint analysis application in the context of the program under analy-
sis. While analysis developers can always use tooling for an analysis
platform’s implementation, such as low-level debuggers, doing so
makes it harder to discern issues in the analysis code from unre-
lated implementation details of the platform. In contrast, tooling
for the executed program may be oblivious to the taint analysis.
However, issues in the analysis specification can become easily
apparent if the analysis actions are inspected at the level of the
program under analysis. In TruffleTaint we aim to support such in-
vestigations without exposing developers to implementation details
of the platform.

Taint analysis poses unique challenges which can benefit from
more specific tooling. One such challenge is designing a propagation
semantics. Propagating taint over all possible data dependencies
can lead to an overly excessive spread of taint labels that signifi-
cantly impacts the usefulness of certain taint analysis applications.
This problem is known as overtainting and is especially prone to
occur when taint is propagated over implicit data flows. Conversely,
ignoring certain data dependencies to avoid overtainting can lead
to the analysis not detecting important data flows, which is referred
to as undertainting. In practice, the effectivity of a particular prop-
agation semantics depends on both the taint analysis application
that uses it and the program it is used on. However, research that
addresses these problems generally evaluates its approaches by just
presenting improved results produced by specific taint analysis
applications and specific programs. A more methodical approach to
evaluation would require collecting detailed information about taint
spread, which would make other approaches more comparable. The
availability of such information would also aid analysis developers
in selecting a suitable propagation semantics for their specific use
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LabelFactory

ImplicitLabel beforeProgram()

TaintLabel createLabel()

void afterProgram()

TaintLabel
TaintLabel receive(
Context ctx, int idx, Object val)

TaintLabel merge(
TaintLabel lbl, int ctx)

ImplicitLabel

void onBefore(Context ctx)

void onAfter(Context ctx)

Context
List getTags()

Map getMetadata()

String getLanguage()

String getFunctionName()

String getSourceLocation()

void changeValue(Object val)

ImplicitLabel getFrameLabel()

void setFrameLabel(
ImplicitLabel l)

void clearFrameLabel()

ImplicitLabel getStaticLabel()

void setStaticLabel(
ImplicitLabel l)

void clearStaticLabel()

Figure 2: Interfaces for analysis specification.

1 class VanillaLabel:

2 receive(ctx , idx , val): return this;

3 merge(other , ctx): return this;

Figure 3: Taint label for basic taint tracking.

case. We thus aimed at an approach for analysis specification that
allows for taint analysis applications that can be configured with
a propagation semantics. We also implemented tooling that can
collect this information.

4 LABEL-DEFINED DYNAMIC TAINT
ANALYSIS

In this section we describe our new, label-defined approach to speci-
fying dynamic taint analysis applications. In this approach, analysis
developers encode the properties of the desired taint analysis within
the propagated labels. The analysis engine delegates propagation
decisions to these labels by invoking specific methods on them with
context information as arguments. By implementing these meth-
ods, analysis developers can make arbitrary changes to how these
taint labels are propagated, define where taint labels are introduced
and implement arbitrary taint sinks and sink actions. To enable
this approach, we designed language-agnostic interfaces, which
enable arbitrary objects to act as taint labels. In the following, we
describe these interfaces, how analysis developers can use them to
implement properties of a dynamic taint analysis, and how our ap-
proach allows to leverage composition and abstraction in analysis
specifications.

4.1 Taint Propagation
Our approach requires taint labels to implement the Taint-

Label interface shown in Figure 2. When a tainted value flows
into an operation, its taint label is received in that operation, i.e., the
analysis engine invokes that label’s receive method with context

valueOf(address)

ReadVar
"address"

Load

...

valueAt(address)

l0: labelOf(address)

l5: l3.merge(l4, LOAD)

l3: labelAt(address)
l4: labelAt(address+1)

l7: l2.merge(l6, EXPR)

l1: l0.receive(ctx: ,

idx: -1, val:v0)

l2: l1.receive(ctx: ,

idx: 0, val:v0)

l6: l5.receive(ctx: ,

idx: -1, val: v1)

l8: l7.receive(...)

Context<ReadVar>
tags: [Expression, ReadVar]

metadata: {"type" -> "address",
"varName" -> "address"}

Context<Load>
tags: [Expression, LoadViaPtr]

metadata: {"type" -> "short"}

Figure 4: Label-defined taint propagation for the expression
... = *address;, which loads a 2-byte value from a memory
address stored in the local variable address. Intermediary
labels are numbered in the order of their creation at runtime.

information describing both the kind of input (through idx and val
arguments) and the receiving operation (through the ctx argument).
Analysis developers can implement receive to determine whether
the operation the tainted value is received in constitutes a taint sink,
if so, perform arbitrary taint sink actions. To adapt propagation
semantics, analysis developers can implement receive to return
different values based on this context information. If reception re-
turns null, then the corresponding value is no longer considered
tainted. receive can also return either the taint label itself, in order
to continue its propagation, or return another taint label, e.g., to
store additional data required for further taint propagation. When
an operation produces a value, the analysis engine merges the taint
labels received from the operation’s tainted input values, if any, and
attaches the resulting merged taint label to that value. The analysis
engines delegates the logic for merging multiple taint labels to taint
labels using their merge methods.

In the simplest case, a taint label is a primitive flag and it is
propagated only through explicit data flows. Figure 3 shows the
implementation of such a vanilla dynamic taint analysis, as it is
sometimes called in literature [21, 22], in the VanillaLabel class.
Figure 4 illustrates how an analysis engine invokes the TaintLabel
methods during taint propagation when reading a value from a
memory address which is stored in a local variable named address.
The expression is shown as an abstract syntax tree (AST), which has
the Load expression as a child of some other expression. Load’s only
child expression, a read access to address, provides the memory
address from which the target value is loaded. The Figure assumes
that both the memory address and the value stored at that address
are tainted with a VanillaLabel.

When nodes performmemory accesses, the analysis engine loads
the taint labels of these values from its shadow storage. In Figure 4,
the first loaded taint label is l0, which is the taint label of the
memory address stored in address.1

1In our approach, shadow storage is not directly accessible to analyses. To explicitly
set the taint label of the value stored at a particular memory location, they can execute
instrumented code of the analysis’ target language from the propagation semantics.



Dynamic Taint Analysis with Label-Defined Semantics MPLR ’22, September 14–15, 2022, Brussels, Belgium

When a tainted value flows into an operation, its taint label is
received in that operation. Figure 2 shows three parameters which
are provided by the analysis engine to the the receivemethod. The
first argument, ctx, is a Context object, which acts as a bridge to
the analysis engine. It can be used to query information about the
operation and to produce certain side effects. The second argument,
idx, describes to which input of the operation the taint label is
attached to. The third argument, val contains the value to which
the taint label is currently attached. Analysis developers can change
the semantics of taint propagation by returning different taint label
implementations based on this provided information.

Analysis engines using label-defined dynamic taint analysis de-
fine an indexing scheme that assigns a unique number to each kind
of input for a particular kind of operation. This scheme enables
analysis developers to reliably discern how an operation will use a
particular input value when it is received with a particular idx. For
example, in a binary arithmetic operation indices 0 and 1 always
denote the left and right operand, respectively, and in a memory
store operation index 0 denotes the target memory address while
index 1 denotes the value to store. An idx of −1 always indicates
that the tainted value was read from memory by the operation itself
rather than being provided to it by a subexpression. In Figure 4
the read access to the variable address loads the memory address
from the variable address, i.e., from memory. l0 is thus received
with an idx of −1 in the ReadVar expression. This reception results
in l1. Since no further tainted values flowed into ReadVar, l1 is
directly applied to v0, i.e., the memory address read from address
and provided to Load. Since ReadVar is the only child of Load, the
address’s taint label is received with index 0 in the Load expression,
which results in l2.

Load reads a 2-byte value, v1, from a memory that is addressable
at byte-level. Since shadow storage needs to store taint labels at
the granularity of addressable memory, this read access requires
the analysis engine to load the taint labels for each of these bytes,
which are shown as l3 and l4. To derive a single taint label of a
multi-byte value, the analysis engine invokes merge on the taint
label of the first tainted byte with that of the second tainted byte as
argument. This is repeated with the aggregated labels as receivers
until the taint labels of all tainted bytes are consumed. l3 thus
receives the merge method call with l4 as argument and returns
l5 as the aggregated taint label. In order to reduce the number of
intermediary taint labels, only the merged taint label is received
in the expression loading the value.2 Thus l6 is received from l5
while l3 and l4 are not received.

Taint labels of input values to an operation are merged in the
order of the idx they were received with. If a value loaded from
memory contributes to a data flow, the analysis engine merges its
received taint label into those of the other inputs. In Figure 4, l6
is thus passed as an argument to l2’s merge method. This merge
produces l7, which is finally attached to the value returned from
Load and received as l8 in Load’s parent expression. Taint analyses
that use multiple kinds of taint labels cannot predict which of

2If needed, one could change this semantics using a special AggregatedLabel that
is returned from merges in such cases and internally stores the taint labels of the
individual bytes. When this label is eventually received, it would relay this reception
to its stored labels, merge the such received labels and finally receive the resulting
taint label.

1 class PointerLabel extends VanillaLabel:

2 receive(ctx , idx , val):

3 if (idx == 0):

4 if (ctx.getTags ().contains('Load')

5 || ctx.getTags ().contains('Store ')):

6 return null;

7 return this;

Figure 5: Propagation semantics following Araujo et al. [5].

them will be the receivers of the merge method invocations, so
they must ensure that each label combination’s merge semantics is
commutative.

While the first argument to merge is the taint label to merge with,
the second argument describes the context in which the taint labels
are merged. Some taint analyses for low-level languages merge
taint labels of multiple bytes of the same value differently than
taint labels of separate values [15]. The analysis engine invokes
merge with different numeric values for the context argument
in these cases, as can be seen in the two merges in Figure 4, so a
propagation semantics implemented on this engine can make this
distinction. Which merge contexts exist depends on the operations
of the instrumented language. For example, an assignment oper-
ation to an array at a particular index in JavaScript produces two
data flows. The first one propagates the taint labels of the array
object, array index and value to store to the value stored within
the array at that index. The second data flow propagates the taint
labels of the same values to the value returned from the assignment
expression. Since these are separate data flows, the analysis engine
needs to merge the taint labels that contribute to the corresponding
values separately and provide according merge context values to
enable propagation semantics implementations to distinguish these
cases.

4.2 Context-Aware Propagation Semantics
While some analysis engines already enable analysis developers

to define custom taint label representations and to specify how such
taint labels are to be merged, our approach additionally enables
analysis developers to define which taint labels should be merged.
To this end, our approach provides the receive method for taint
labels, which provides detailed context information based on which
analysis developers can execute the propagation semantics they
require. This context information is provided in the form of argu-
ments to receive and contains details of both the operation itself
and the context it is used in.

Figure 4 illustrates how Context objects represent details for the
operations used in our running example in the form of semantic tags
and additionalmetadata. Tags are literals that define the kind of the
operation. All tags that apply to the current operation can be queried
using the getTagsmethod. Tags can represent abstract information
such as whether the operation is a value-producing Expression or
a Statement that only consumes values for languages that make
such a distinction. More importantly though, the analysis engine
must provide a specific tag for each kind of operation defined by
the targeted language. These tags, which may be language-specific,
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enable analysis developers to adapt taint propagation on the level
of individual language features. Some operations require additional
information to fully describe their semantics. This information is
provided in the form of named metadata through the mapping
returned from getMetadata. Figure 4 exemplary shows that for
operations of a typed language that are tagged Expression, the type
of that operation’s return value can be provided, while for an access
to a local variable additionally the name of that variable be can
provided. We used this approach of describing operations, which
was taken from Van de Vanter et al. [14], already in our previous
work for implementing a multi-language dynamic taint analysis
engine with a fixed, language-level propagation semantics for each
language [25].

While the idx and val arguments to receive provide details on
a specific taint propagation, the context argument also provides
details on the context of the operation that receives the taint prop-
agation. This context includes the name of the function and the
location in source code where the operation is used. It also includes
the implementation language of the operation in order to enable
the implementation of language-specific propagation semantics on
a multi-language analysis engine.

The context information provided to the receive method en-
ables detailed modifications to the respective taint labels’ propaga-
tion semantics. For example, Figure 5 shows the code of a receive
method that uses the provided context information to implement
the propagation semantics optimization that Araujo et al. [5] pro-
posed, i.e., disregarding the taint label of the memory address in
memory load and store expressions. Both memory loads and mem-
ory stores receive the memory address to access as their first argu-
ment, which is denoted by an idx of 0 in our approach. The code
in Figure 5 thus compares the idx argument to 0 and searches the
context object’s list of tags for ones that indicate a memory load or
a memory store in order to determine whether the tainted value
is currently propagated as the memory address argument for a
memory access. If so, the code returns null so that the analysis en-
gine considers the memory address to not be tainted and thus does
not propagate the address’s taint label to a value being stored to
memory or being loaded from memory. Otherwise, i.e., for all other
explicit data flows, the taint label returns itself so that it continues
to be propagated. If the expression shown in Figure 4 propagated
only taint labels of this kind, the reception of l1 with index 0 in
the Load operation, which is tagged as Load, would return null.
Therefore, l6 would be the only taint label affecting the data flow
in that operation and, because of this, would be propagated without
further taint label merging. Likewise, in an expression that stores a
value to memory the taint label of the memory address could not
spread to the stored value.

4.3 Taint Propagation in Implicit Data Flows
To support taint analyses that require instrumentation beyond
explicit data flows, we define implicit labels. As Figure 2 shows,
implicit labels are an extension to regular taint labels that can be set
using Context objects as either frame label or static label. Once an
implicit label is set, it is notified whenever an expressions starts or
ceases to be executed. It is furthermore received in all expressions
that produce values. Such received labels are then attached to these

1 class Implicit extends VanillaLabel:

2 constructor(src): this.src = src;

3 receive (...): return new Explicit ();

4 onBefore(ctx): {}

5 onAfter(ctx):

6 if (sameSource(ctx , this))

7 ctx.clearFrameLabel ();

8 class Explicit extends VanillaLabel:

9 receive(ctx , idx , val):

10 if (isBranch(ctx , idx)

11 && !ctx.getFrameLabel ())

12 ctx.setFrameLabel(new Implicit(

13 ctx.getSourceLocation ()));

14 return this;

Figure 6: Propagation semantics for implicit data flows.

. . .

If

<a==0> Write "c"

Literal 2

Frame Label
Storage

1) fl.onAfter(<Expr>)

2) fl.onBefore(Write)

3) fl.onBefore(Lit) 4) fl.onAfter(Lit)

5) fl.onAfter(Write)

6) fl.onAfter(If)l0: labelOf(<a==0>).receive(
ctx: Context<If>,

idx: 0, val: true)

l2: l1.receive(

ctx: Context<Write>,

idx: 0, val: 2)

fl: new

Implicit()

l1: fl.receive(ctx: Context<Lit>, idx: -2, val: 2)

clearFrameLabel()

Figure 7: Propagation of the taint labels shown in Figure 6
for the expression if (a==0) { c = 2; }. Propagation of
Explicit label is shown in blue. Propagation of Implicit is
shown in green, with numbers indicating execution order.

values or, if the values were already tainted, merged with their taint
labels. Frame labels are set in the scope of the currently executing
function and therefore have no impact on that function’s callers
or callees. Static labels, in contrast, apply to the whole program
and remain active until they are either cleared or replaced. Implicit
labels are received with an idx of either −2 or −3, depending on
the scope they are set in. When set implicit labels are merged, they
are always the receivers of the merge method calls.

Implicit labels can be used to implement taint propagation over
implicit data flows. The generic algorithm for doing so is as follows.
(1) When an expression that changes control flow does so based
on a tainted condition value, an implicit label is set. Since this
implicit label will be received in all subsequent expressions, all
values which are propagated because of that condition value will
be tainted, which accounts for the implicit data flow. (2) When
execution reaches code that would be executed regardless of the
control flow decision that depended on a tainted condition value,
the implicit label is cleared since the implicit data flow has thus
ended. Figure 6 sketches an implementation of this algorithm for a
programming language with only structured control flow. Figure 7
illustrates how this implementation works using the implicit flow
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example from Figure 1. In that Figure, the If expression receives a
condition value from its left subexpression and either executes an
assignment of the constant 2 to the variable c or not, depending on
that condition value.

In the propagation semantics of Figure 6, taint labels of type
Explicit are propagated over explicit data flows. To implement
step (1) of the algorithmmentioned above, they detect when they are
being received as the condition value for a control flow branch and,
if so, set a new Implicit as frame label. The first taint propagation
in Figure 7 is the reception of the condition value’s taint label in
the If expression. Since the conditions are met, that taint label sets
a new frame label, which is called fl. fl is then notified that the
expression <a==0> has finished executing.

Figure 7 shows the tainted condition value as true, hence the
conditional assignment is executed. Since our example assumes
a programming language with only structured control flow, the
conditionally executed code can be represented as a proper subex-
pression of If. To implement step (2) of the algorithm mentioned
above each implicit label removes itself as frame label after the
expression that originally set it as such, which it identifies by its
source code position, has finished its execution, since that implies
that the conditionally executed code has also finished its execution.
Figure 7 shows this removal in the sixth invocation of an execu-
tion event notification. Explicit does not overwrite already set
implicit labels because in a language with only structured control
flow nested control flow decisions cannot extend the scope of an
implicit flow.

Our approach does not require implicit labels to be separate from
regularly propagated taint labels. However, if Implicit could be
propagated and thus merged with other labels from outside the
current function, the additional data it needs to store would require
more complicated logic in merge. To avoid the associated decrease
in run-time performance, Implicit instead returns an Explicit in
its receivemethod. fl is thus received as an Explicit in Figure 7’s
Literal expression and is propagated as such to Write.

Label-defined dynamic taint analyses can also support taint prop-
agation over implicit flows for languages with unstructured control
flow. In such languages, control flow expressions can arbitrarily
dispatch between code blocks rather than containing the condition-
ally executed code as a subexpression. Dytan uses a postdominator
tree to detect the code block at which control flow merges again
after a conditional branch and removes its equivalent of an implicit
label just before that block is executed [10]. To support this con-
cept, an analysis engine that supports label-defined taint analyses
needs only provide block identifiers as metadata for Code Block
expressions and the according merge block’s identifier as metadata
to each control flow expression.

We present this semantics for propagating taint over implicit
data flows only to show that it can be achieved using our approach
to taint analysis specification. More advanced programming lan-
guages such as JavaScript and LLVM IR typically contain multiple
kinds of expressions that affect control flow in different ways. Sup-
porting such a language requires implementing special cases for
each of these expressions in potentially both implicit labels and
regularly propagated taint labels. However, as we have shown,
label-defined dynamic taint analysis allows fine-grained control

1 class SourceLabel extends VanillaLabel:

2 receive(ctx , idx , val):

3 if (ctx.getTags ().contains('Return ') &&

4 ctx.getFunctionName () == '...')

5 return new VanillaLabel ();

6 return null;

7 onBefore(ctx) {} onAfter(ctx) {}

Figure 8: Programmatically defining the return value of a
particular function as a taint source.

over taint propagation across explicit data flows as well as receiv-
ing execution events beyond explicit data flow. Combined, these
capabilities enable analysis developers to support the effects of any
kind of control flow in their propagation semantics. More impor-
tantly, our approach does not restrict analysis developers to a single
semantics for implicit flows. Decisions such as whether a tainted
loop condition value causes an implicit data flow to all subsequent
loop iterations or only to the next one can be modeled in separate
propagation semantics without having to adapt the analysis engine
itself.

4.4 Taint Sources and Taint Sinks
The LabelFactory interface, shown in Figure 2, is used to imple-

ment taint sources. An analysis engine that supports label-defined
dynamic taint analysis would receive a script or a path to a script
that returns an object implementing this interface. If this anal-
ysis engine provides a function to instrumented programs with
which they can manually taint a value, the analysis engine creates
the taint labels for these values using the factory’s createLabel
method. Such a function is required for analysis engines targeting
languages which offer taint tracking as a feature, such as older
versions of Ruby [34]. LabelFactory also provides methods which
enable analyses to perform setup and cleanup actions before and
after the instrumented program is executed.

The label factory’s beforeProgram method is invoked by the
analysis engine and the implicit label returned from that invoca-
tion is set as static label before the instrumented program starts
to be executed. This can be leveraged to implement arbitrary taint
sources. For example, consider an analysis specification which re-
turns an object of the SourceLabel class shown in Figure 8 in
beforeProgram. Set as static label, this label would then be re-
ceived in all executed program expressions and thus attached to
all values produced by them. However, SourceLabel implements
its reception to only return a taint label for the return value of a
particular function. Thereby this function is instrumented as a taint
source. The same approach of using static labels enables arbitrary
run-time conditions to be defined as taint sources. For example,
to define the occurrence of an integer overflow as a taint source
the implicit label would return itself if received as static label, but
implement its mergemethod to never replace an existing label. The
reception of this implicit label in an arithmetic operation returns a
new ValueLabel, which stores the operand and the kind of operation,
while other receptions return null. With this strategy, all operands
to an arithmetic operation are tainted. If ValueLabel is merged
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Figure 9: Delegation of concerns via taint label composition.

with another ValueLabel, it uses the information both labels store
to check whether an overflow occured. If so, the merge results in
a regular taint label, otherwise it results in null. In this system,
both ValueLabel and regular taint labels return the regular label
if only one of the merge operands is a ValueLabel, which happens
when an already overflown value flows into another arithmetic
operation. Thus, ValueLabel is not propagated outside of arithmetic
expressions but causes a regular taint label to be attached to all val-
ues created from an arithmetic overflow. Figure 11 in Appendix A
sketches an implementation of this concept.

Each taint label can implement its receive method to detect
the run-time conditions it considers to be a taint sink and perform
arbitrary actions there. For example, the taint label could check if it
is being read from the actual arguments of a sensitive function, such
as C’s printf function, and terminate the program like TaintCheck.
To implement Neon’s automatic encryption of sensitive data before
the network boundary the taint label could detect when it is received
as an argument to an according system call and use the Context
interface’s changeValue function to replace the value it is attached
to with an encrypted one.

4.5 Analysis Definition through Composition
In addition to supporting precise and flexible definition of taint
analysis components, label-defined dynamic taint analysis enables
composition as a tool to both simplify and enrich taint analysis
implementations. Since label-defined analysis implementations are
object-oriented, inheritance simplifies the implementation of new
analyses by reusing parts of existing ones. We have done this in
Figures 5, 6 and 8, where we extended VanillaLabel with various
new semantics. One could similarly extend an existing taint label
that provides a specific propagation semantics with additional taint
sinks or additional information to propagate. Furthermore, existing
taint label implementations can be reused as part of new analyses.
As an example of this, in Figure 8 we defined a new taint analysis
with a particular taint source, but reused VanillaLabel as the
actual label to propagate.

Since label-defined taint analyses have a known interface, one
analysis implementation can wrap another. Figure 9 illustrates this

concept, which follows the object-oriented design pattern of deco-
rators [16]. The Figure shows that a wrapper analysis consists of a
label factory and taint labels which each refer to a separate dele-
gate analysis. The wrapper analysis’ factory and labels delegate all
invocations of the methods of their respective interfaces to these
delegates. In this manner, the wrapper labels and factory essentially
instrument the taint analysis implemented by the delegates. For
this instrumentation to be sound, all taint labels produced by the
wrapped taint analysis must also be wrapped, so that the analysis
engine only propagates WrapperLabel. This wrapping is done by
the wrapper labels and factory in two ways. First, they wrap the
labels returned from delegated method calls. Second, they wrap
the Context object provided to the delegated method calls. Such
a WrapperContext delegates most methods to the context object
provided to the WrapperLabel by the analysis engine, but wraps all
implicit labels set through that context. In contrast to soundness, all
taint labels passed to or accessed by the delegate analysis must be
unwrapped in order to not interfere with the implementation of the
delegate taint labels, which may involve dynamic type checks. For
this reason, wrapper labels unwrap the labels passed to the merge
method and wrapper contexts unwrap implicit labels before pro-
viding them to the delegate labels. We provide an implementation
of such a wrapper analysis in Figure 12 of Appendix A.

Wrapper analyses have multiple applications. One application is
the implementation of configurable dynamic taint analyses, that is,
applications of dynamic taint analysis that can be configured with a
propagation semantics. Here, the wrapper analysis would consume
the propagation semantics implemented by a separate taint analysis
but track additional information or implement specific taint sources
or sinks. Some analysis engines, e.g., DFSan [2], provide run-time
flags to configure some aspects of the semantics with which taint
labels are propagated. Configurable dynamic taint analyses using
our approach provide more flexibility since they are not limited by
predefined configuration choices.

Wrapper analyses can also be used to add new features to the
analysis engine. For example, the ability to run multiple taint anal-
yses in parallel for the same program execution, as it is supported
by ALDA [9], can be implemented using a wrapper analysis that
delegates to multiple analyses rather than just one. Such a combined
analysis assigns a unique identifier to each delegate analysis. The
combined labels it propagates may contain any number of delegates
and ensure isolation between the analyses when delegating method
calls. For example, they implement merge to only merge delegate
labels with the same identifier and include any delegate labels that
have no suitable merge partner in the resulting combined label
without merge. They also implement context wrappers such that
each analysis can only retrieve the implicit labels it set itself and
that multiple implicit labels can be set in parallel. We sketch an
implementation of such a combined analysis in Figures 13 and 14
of Appendix A.

In the following sections, we will provide additional uses for the
wrapper analysis concept.
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5 IMPLEMENTATION IN TRUFFLETAINT
We implemented label-defined dynamic taint analysis in Truffle-
Taint, our GraalVM-based dynamic taint analysis platform. In previ-
ous work we presented TruffleTaint’s capability to propagate taint
in and across multiple programming languages [25] and how we
leveraged speculative optimization and dynamic compilation to re-
duce TruffleTaint’s run-time overhead [26]. Label-defined dynamic
taint analysis is uniquely suited to managed runtimes as it allows
for both leveraging the managed language with its associated tool-
ing and for taking advantage of performance optimizations the
managed runtime is already capable of. It both complements Truf-
fleTaint’s language support and integrates well with TruffleTaint’s
performance optimization strategies. The result is a highly con-
figurable, polyglot dynamic taint analysis platform which enables
analysis developers to choose between priorities such as analysis
performance, analysis complexity and tooling support.

5.1 Performance Optimizations
Since GraalVM and TruffleTaint are implemented in Java, we also
chose Java as the principal implementation language for taint anal-
yses on our platform. To execute programs, GraalVM language
runtimes parse them into an abstract syntax tree whose nodes are
implemented as Java objects. Instrumentations such as TruffleTaint
are also inserted as nodes into these Truffle ASTs. Truffle is inte-
grated with the GraalVM JIT compiler, a dynamic compiler for Java,
so that these ASTs can be dynamically optimized and compiled,
including inserted instrumentation. For this reason, taint analyses
implemented on TruffleTaint can reach performance close to that
of fully engine-integrated analyses.

Taint analysis engines often restrict their configuration options
in favor of performance. However, by taking advantage of dynamic
optimizations typically performed by managed runtimes that target
object-oriented languages, the configurability afforded by label-
defined taint propagation need not lead to poor performance. The
performance impact of a taint analysis rather depends on the com-
plexity of the analysis and the quality of its implementation. We
implemented the VanillaLabel from Figure 3, PointerLabel from
Figure 5 and a wrapper analysis in Java. Table 1 shows the increase
in normalized run time of each of these label-defined analyses over
an engine-integrated vanilla dynamic taint analysis for the bench-
marks we used in our earlier work on TruffleTaint’s performance3.
More details on our benchmarks and further results can be found
in Appendix B. In the following, we explain these results and which
optimization strategies we used to achieve them.

Managed runtimes often use inline caches, i.e., at a particular
call site of an interface method they observe the concrete types of
the objects whose methods are called and store a fast path to the
implementations of those methods for the most frequently observed
types. During dynamic compilation, if an inline cache contains only
one entry then its targeted method can be inlined. If it is, then the
type of label returned from the inlined TaintLabel method may
become known to the compiler, which can thus inline that type’s
methods that are called during further taint propagation. To take
advantage of such optimizations, we implemented our interfaces
for TruffleTaint as Truffle libraries, which is a feature of GraalVM’s
3Available at https://github.com/jkreindl/taint-benchmarks

Truffle framework that enables the definition of interfaces and the
automatic optimization of calls to their implementations using, for
example, inline caches [3]. Due to this optimization, our benchmark
results in Table 1 show that for most benchmarks a label-defined
vanilla dynamic taint analysis increases the benchmark’s normal-
ized run time by less than 20% compared to an equivalent engine-
integrated taint analysis, although the increase in run time can be
considerable for other benchmarks.

The context information provided through ctx and idx param-
eters in TaintLabel methods is constant at each call site. During
dynamic compilation, it can thus be constant-propagated [28] and
can enable partial evaluation [36], i.e., simplification of inlined
propagation semantics based on known operands. This can, in
turn, enable other optimizations such as partial escape analysis [33],
which can optimize away the allocation of short-lived intermediate
Context and TaintLabel objects. As a result of such optimizations,
the benchmark results of Table 1 show that a label-defined taint
analysis which adapts its propagation based on context information
as shown in Figure 5 can incur almost the same slowdown as a
VanillaLabel4.

The column WrapperLabel of Table 1 shows that a wrapper
analysis which delegates to VanillaLabel usually increases the
normalized benchmark run time up to 3 times as much as the
VanillaLabel alone does, though higher increases are also possi-
ble. This illustrates the tradeoff between performance and function-
ality. The advantage of label-defined taint propagation, however, is
that it leaves the choice between these priorities to analysis devel-
opers. Conversely, engine implementers can focus on performance
optimizations, such as fast and efficient shadow memory, without
having to care about analysis semantics.

While our benchmark results show dynamic compilation and
common optimizations to be effective at improving the perfor-
mance of label-defined taint analyses, their effectivity depends on
the compiler’s ability to inline the propagation semantics. The more
complex that semantics is, the faster its repeated inlining consumes
the compiler’s inlining budget, i.e., the maximum amount of code
allowed for inlining. The same problem applies to other approaches
that compile the propagation semantics, such as ALDA and Phos-
phor. In earlier work, we described how TruffleTaint enables the
dynamic JIT compiler to optimize away instructions for taint prop-
agation in program parts that are not reached by tainted data [26],
which mitigates this problem by reducing the amount of code to
compile. We reused this optimization technique to optimize away
instructions for attaching implicit labels as long as none have been
set. As a result, TruffleTaint incurs almost no slowdown as long as
no taint labels are propagated, regardless of the propagation seman-
tics’ complexity. Due to space restrictions, the benchmark results
that show this can be found in Appendix B in Table 2. Label-defined

4Since array objects in Java lack a contains function, our Java implementation of
the taint label shown in Figure 5 instead uses a loop over the context object’s array
of tags to determine whether the array contains a particular tag. However, in some
instances, the GraalVM JIT compiler would not automatically unroll this loop even
though that array and its elements were known constants during compilation. Not
doing so resulted in the compiler not being able to evaluate such determinations at
compiletime. In order to ensure that these determinations could be fully evaluated
during compilation whenever possible, we annotated this loop with a Truffle compiler
directive forcing its unrolling in inlined propagation semantics.

https://github.com/jkreindl/taint-benchmarks
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Table 1: Increase in normalized runtime of various label-defined propagation semantics vs. vanilla dynamic taint analysis
hardcoded in the analysis engine.

Language Benchmark Vanilla Vanilla Label Pointer Arg Label Vanilla Wrapper Label
Engine Runtime Change Runtime Change Runtime Change

C/C++-JS BinaryTrees 1.59 1.68 +5.6% 1.65 +3.8% 1.70 +6.9%
C/C++-JS Fannkuch 1.93 2.68 +38.8% 2.66 +37.7% 3.17 +64.1%
C/C++-JS Fasta 1.05 1.06 +1.0% 1.07 +1.9% 1.09 +3.8%
C/C++-JS Mandelbrot 3.25 4.69 +44.2% 4.72 +45.2% 7.04 +116.4%
C/C++-JS NBody 1 4.52 5.00 +10.6% 4.98 +10.2% 5.47 +21.0%
C/C++-JS NBody 3 1.71 1.75 +2.3% 1.75 +2.3% 2.02 +18.1%
C/C++-JS NBody 2 1.58 1.93 +22.2% 2.09 +32.4% 2.49 +57.8%
C/C++-JS Pidigits 0.99 0.99 +0.0% 0.97 -2.0% 1.00 +1.0%
C/C++-JS ReverseComplement 1.64 1.63 -0.6% 1.93 +17.7% 1.99 +21.3%
C/C++-JS SpectralNorm 1.49 1.83 +22.8% 1.98 +32.9% 2.61 +75.1%
C/C++ BinaryTrees 1.58 1.65 +4.4% 1.68 +6.3% 1.77 +12.0%
C/C++ Fannkuch 2.01 3.01 +49.8% 2.80 +39.4% 4.51 +124.6%
C/C++ Fasta 1.71 1.80 +5.3% 1.80 +5.3% 1.94 +13.4%
C/C++ Mandelbrot 2.47 3.62 +46.6% 3.59 +45.4% 5.61 +127.2%
C/C++ NBody 1 2.14 3.53 +64.9% 3.47 +62.1% 4.27 +99.4%
C/C++ NBody 3 1.13 1.34 +18.6% 1.34 +18.6% 1.71 +51.4%
C/C++ NBody 2 1.99 2.33 +17.1% 2.32 +16.6% 2.80 +40.6%
C/C++ Pidigits 6.53 6.98 +6.9% 7.64 +17.0% 11.19 +71.4%
C/C++ ReverseComplement 1.93 1.94 +0.5% 1.96 +1.6% 1.85 -4.1%
C/C++ SpectralNorm 1.24 2.18 +75.5% 2.21 +77.9% 2.88 +131.8%
JS BinaryTrees 2.31 2.64 +14.3% 2.69 +16.4% 2.77 +19.9%
JS Fannkuch 2.30 2.95 +28.2% 2.89 +25.6% 3.46 +50.4%
JS Fasta 1.50 1.51 +0.7% 1.50 +0.0% 1.71 +14.0%
JS Mandelbrot 2.37 4.15 +75.0% 4.31 +81.7% 7.54 +217.8%
JS NBody 1 1.87 6.52 +248.7% 6.46 +245.5% 14.55 +678.3%
JS NBody 3 1.82 3.06 +68.1% 3.07 +68.7% 4.29 +135.7%
JS NBody 2 2.20 2.70 +22.7% 2.69 +22.3% 2.10 -4.5%
JS Pidigits 0.99 1.01 +2.0% 1.03 +4.0% 1.01 +2.0%
JS ReverseComplement 4.65 5.48 +17.8% 5.27 +13.3% 9.94 +113.7%
JS SpectralNorm 1.00 1.11 +11.0% 1.11 +11.0% 1.88 +88.1%

taint analysis further complements our previous optimization strat-
egy since propagation semantics can only be inlined in code that is
reached by tainted values. For our benchmarks we still doubled the
GraalVM JIT compiler’s inlining budget. While a separate inlining
policy for taint analysis could mitigate the code size issue further,
we consider tuning a compiler’s optimization heuristics for specific
programs or taint analyses to be orthogonal to this paper.

5.2 Polyglot Features
Label-defined taint analyses can be implemented in any program-
ming language that supports object-orientation. Using the analysis
engine’s implementation language for analysis specifications al-
lows for using that engine’s APIs from these specifications. For
example, on TruffleTaint, analysis developers could use Truffle’s
compiler directives for performance improvement. Besides this,
analysis engines will typically provide an API for executing code
of their targeted language. This API can be used to implement a
wrapper analysis which delegates to objects of that language. Such
analyses require frequent crossing of the language boundary, which

can significantly reduce performance. However, this approach gives
analysis developers the option of using the targeted language for
analysis specification, which can provide benefits such as tooling
support for development. We implemented such a wrapper analysis
on TruffleTaint to take advantage of GraalVM’s extensive language
support and its associated tooling.

Figure 10 illustrates the capability of the polyglot wrapper analy-
sis we implemented on TruffleTaint. It shows GraalVM’s language-
agnostic debugger suspended at a breakpoint in the receivemethod
of a VanillaLabel implemented in JavaScript. In addition to that
method, the call stack also contains the executing methods of the
instrumented program, enabling analysis developers to debug a
taint analysis both in the context of and at the same level as the
program under analysis, regardless of which languages either is im-
plemented in. We further specifically integrated TruffleTaint with
GraalVM’s debugging support such that, even though the taint label
of a value is transparent for the program under analysis, tainted
values are displayed as such by the debugger and their taint labels
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Figure 10: Integrated debugging of polyglot taint analyses
and polyglot applications using TruffleTaint.

can be inspected as well. We used this debugging support exten-
sively during the implementation of label-defined taint analysis. It
significantly simplified diagnosing propagation issues both of the
engine and in propagation semantics we implemented in JavaScript
on top of it, and also proved invaluable during the implementation
of taint analysis applications such as the ones we present in Sec-
tion 6. Besides debuggers, a polyglot wrapper analysis also gives
analysis developers access to other useful tooling such as profilers
or code coverage instruments.

6 APPLICATIONS
In this section we highlight some applications of dynamic taint
analysis that can benefit from being implemented using our label-
defined approach.

6.1 Existing Application
Label-defined taint analysis allows the reimplementation of even
complex existing applications of dynamic taint analysis. An exam-
ple of such an analysis is Penumbra [11], which tracks the program
locations from which tainted values originate and prints these lo-
cations when those values flow into a taint sink. By defining taint
sinks as program locations at which faults are known to occur,
Penumbra gives a list of sources that contribute to a particular fault.
The original Penumbra targets native code and instruments various
kinds of program inputs as taint sources. We implemented Penum-
bra’s core logic in JavaScript in a PenumbraLabel, which is provided
in Figure 15 in Appendix C. This label propagates a set of source
locations, which it initializes with the location of its first reception.
Since we wanted our implementation to be language-independent
we did not implement language-specific taint sources like the orig-
inal Penumbra, but rather rely on user-level functions to explic-
itly declare taint sources (through LabelFactory’s createLabel)

and sinks (through checking for reception as argument in an ar-
bitrary specific function) in the instrumented program. Note that
PenumbraLabel could be reused in other language-specific taint
analyses which do implement label-defined taint sources. Similarly,
the original Penumbra inherits support for implicit flows from
the analysis engine it is implemented upon. Such support is nec-
essarily language-specific, thus we implemented PenumbraLabel
as a wrapper label which can be configured with a propagation
semantics. However, we only tested this implementation using
a VanillaLabel as a delegate. We also implemented a full infor-
mation flow analysis, which tracks the full propagation path of a
tainted value in addition to its sources. Its JavaScript implementa-
tion is provided in Figure 16 in Appendix C. LLVM DFSan provides
similar path tracking functionality, but this functionality is inte-
grated into the engine, separate from its general taint propagation
and supports only limited configuration of its propagation and
semantics.

6.2 Taint Profiling Infrastructure
Label-defined taint analysis enables instrumentation of taint analy-
ses through wrapper analyses. Based on such instrumentation, we
implemented a taint profiling infrastructure. This infrastructure
records the frequency of taint propagation per program operation
as well as, optionally, how often each operation was executed. This
information provides deep insights into the behaviour of a partic-
ular taint analysis for a particular program execution, which are
useful in a variety of ways. For example, engine developers can use
them to detect the kinds of expressions for which taint is propa-
gated most frequently and which would thus be the most beneficial
targets for optimizations. Using our profiling infrastructure, we
found that for most of our C/C++ benchmarks, the largest subset of
propagations pertained to LLVM’s Phi instructions and thus paid
particular attention that they were not a performance bottleneck.
Similarly, the collected data provides a metric for taint spread in
the number and ratio of operations in which taint propagation
occurred, i.e., that were reached by tainted data. When changing a
propagation semantics, for example with the goal of avoiding exces-
sive taint spread, analysis developers can use this metric to evaluate
the effects of that change and can both assess and empirically argue
its suitability. Analysis users may similarly care to know to which
parts of an instrumented program tainted values spread. If the used
analysis unexpectedly fails to propagate taint to a particular place,
this information can help diagnose where the taint was lost. We
used this tool in concert with another instrumentation label that
records the invocation and result of TaintLabel methods into a
trace file for offline analysis to debug issues like this in TruffleTaint.

6.3 Data-Flow Enabled Applications
Label-defined dynamic taint analysis also enables the development
of applications that instrument data flow to provide benefits to end
users rather than just to analysis developers. One such application
is value-based breakpoints. As we described earlier, taint analysis
applications can use arbitrary APIs provided by the engine to in-
tegrate with its functionality. We leveraged such integration with
Truffle’s debugging framework to implement value breakpoints. In
contrast to traditional source-based breakpoints or watchpoints,



MPLR ’22, September 14–15, 2022, Brussels, Belgium Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

which suspend program execution when the result of a particular
value or expression changes, value breakpoints are attached to a
particular value and are triggered when that value or a value de-
rived from it are used by the running program. Value breakpoints
enable users to step through program execution based on data flow
rather than control flow, which is useful, for example, to diagnose
why a particular value flows to a location where it is known to
trigger a bug. Note that this application can be used in concert
with the information flow analysis we mentioned in Section 6.1.
TruffleTaint’s general integration with Truffle’s debugging support
enables attached taint labels to be visible and inspectable in the de-
bugger. By using value breakpoints as delegates of the information
flow analysis, each value a breakpoint is attached to also records
the previously visited locations, providing an experience similar to
time-travel debugging.

7 CONCLUSION
In this paper, we presented label-defined dynamic taint analysis, a
novel approach to supporting dynamic taint analysis in analysis
runtimes. We showed how this approach enables analyses to spec-
ify and influence all aspects of their semantics without requiring
analysis developers to modify the analysis engine or limiting them
to predefined customization options as it is common in other ap-
proaches. We further evaluated an implementation of our approach
in TruffleTaint, a polyglot dynamic taint analysis platform we de-
veloped in earlier work. This evaluation shows that taint analyses
implemented with our approach can be just as fast as equivalent
engine-integrated analyses, but that our approach also enables anal-
ysis developers to trade off performance in favor of analysis power.
As an example, we presented leveraging GraalVM’s polyglot capa-
bilities in analysis specifications to lift implementation language
restrictions and gain rich, integrated tooling support. Furthermore,
we showed how existing applications of dynamic taint analysis
can take advantage of capabilities enabled by label-defined taint
analysis and presented novel applications such as taint-specific
tooling enabled by our approach and value-based breakpoints.

ACKNOWLEDGMENTS
This research project was partially funded by Oracle Labs. We thank
all members of the Virtual Machine Research Group at Oracle Labs.
Oracle, Java, GraalVM, and HotSpot are trademarks or registered
trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.We also thank all researchers
at the Johannes Kepler University’s Institute for System Software
for their support of and feedback on our work.

A TAINT PROPAGATION
In this section we sketch label-defined implementations of vari-
ous propagation semantics in pseudocode. Figure 11 sketches a
label-defined dynamic taint analysis that tracks values created from
arithmetic overflows as explained in Section 4.4. Figure 12 sketches
the implementation of a generic wrapper analysis as introduced in
Section 4.5. Figures 13 and 14 sketch a wrapper analysis that facili-
tates the execution of multiple independent label-defined dynamic
taint analyses in parallel as introduced in Section 4.5.

B FULL BENCHMARK RESULTS
We evaluated the performance of Java implementations of the
VanillaLabel shown in Figure 3, the PointerLabel shown in
Figure 5 and a wrapper analysis using the Java implementation
of the VanillaLabel as a delegate. This evaluation compared the
peak performance impact of taint propagation with each of these
label-defined taint analyses against the peak performance impact of
a vanilla dynamic taint analysis whose propagation semantics was
hardcoded in the analysis engine. In this evaluation we used the
same benchmarks5 as we did in our previous work on performance
optimizations for TruffleTaint [26]. These benchmarks are reim-
plementations of benchmark problems defined by the Computer
Language Benchmarks Game [1], which are commonly referred to
as Shootouts benchmarks. These benchmarks are designed to in-
troduce tainted values and propagate them as part of their main
workload. We evaluated implementations of these benchmarks in
either C or C++6, in JavaScript, and in a combination of of these
languages. We ran these benchmarks on a system with an Intel
Core i7-3770 processor and 16GB RAM. The Linux-based operat-
ing system on this PC was further configured to collect consistent
benchmark results by, e.g., disabling CPU features such as Intel
Turbo Boost and Hyper-Threading as well as using a performance-
oriented CPU governor. The collected numbers reflect the impact of
taint propagation on the peak performance of these benchmarks. To
collect these numbers we executed each benchmark with enough
warmup iterations to allow the compiled code to stabilize, i.e., no
more compilation occurred during benchmark iterations. We also
repeated each experiment multiple times to verify that the results
we collected were reasonably stable and noise-free.

Tables 1 and 2 provide the results of executing our benchmarks
with the various dynamic taint analyses we mentioned before. For
each benchmark, the tables provide the normalized run time of
the benchmark under an engine-integrated vanilla dynamic taint
analysis as well as the normalized run time of the benchmark for
each of the label-defined dynamic taint analyses we mentioned
above. The table further provides for each benchmark and each of
these label-defined analyses their increase in normalized run time
over the engine-integrated vanilla dynamic taint analysis. Table 2
shows these results when we disabled the taint sources in our
benchmarks and therefore no taint was being propagated, even
though the instrumentation performing taint propagation was fully
enabled. Table 1 shows the results of our benchmarks when the
taint sources we defined in them were active.

C APPLICATIONS
In this section we provide the JavaScript code of label-defined
implementations of example applications of dynamic taint analysis.
The analysis shown in Figure 15 tracks from which taint sources
a tainted value originated and prints the source code locations of

5We chose to omit running the KNucleotide benchmark since its C implementation
depends on taint propagation via tainted pointer values. Since the PointerLabel, as
explained in Section 4.2, ignores the taint status of pointer values, this benchmark
experiences different taint spread with this taint label. Due to TruffleTaint’s speculative
optimization, performance results with different taint spreads are not comparable.
6GraalVM supports the execution of C/C++ code through its LLVM IR runtime, which
in turn supports taint propagation at the level of LLVM IR via TruffleTaint. We thus
compiled the C/C++ implementations of our benchmarks to LLVM IR for execution
and TruffleTaint instrumentation.
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1 class OverflowLabel extends VanillaLabel {

2 constructor(location) { this.location = location; }

3 receive(ctx , idx , val) {

4 if (isSink(ctx)) {

5 print("Value originates from arithmetic overflow that occured at: " + this.location);

6 }

7 return this;

8 }

9 merge(other , ctx) {

10 if (other instanceof OverflowLabel) {

11 return new OverflowLabel(combineLocations(this , other));

12 }

13 return this;

14 }

15 }

16 class ValueLabel {

17 constructor(val , kind) {

18 this.val = val;

19 this.kind = kind;

20 }

21 receive(ctx , idx , val) { return null; }

22 merge(other , ctx) {

23 if (other instanceof ValueLabel && isOverflow(ctx , this.value , other.value)) {

24 return new OverflowLabel(ctx.getSourceLocation ());

25 }

26 return other;

27 }

28 }

29 class ImplicitLabel extends VanillaLabel {

30 receive(ctx , idx , val) {

31 if (idx == -3) { return this; }

32 if (isArithmeticOp(ctx)) { return new ValueLabel(val , kind); }

33 return null;

34 }

35 merge(other , ctx) { return other; }

36 }

37 class LabelFactory {

38 createLabel () { return null; }

39 beforeProgram () { return new ImplicitLabel (); }

40 afterProgram () {}

41 }

Figure 11: Pseudocode sketching a label-defined dynamic taint analysis that tracks values created from arithmetic overflows.

these taint sources when the tainted value reaches a taint sink.
The analysis shown in Figure 16 tracks the path a tainted value
took from its taint sources to each taint sinks it reaches. When the
program has finished its execution, this analysis prints these paths
for all tainted values that reached a taint sink.
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1 class WrapperLabel {

2 constructor(delegate) { this.delegate = delegate; }

3 wrap(label) {

4 if (label != null) { return new WrapperLabel(label); }

5 return null;

6 }

7 unwrap(label) {

8 if (label != null) { return label.delegate; }

9 return null;

10 }

11 receive(ctx , idx , val) {

12 return this.wrap(this.delegate.receive(new WrapperContext(this , ctx), idx , val));

13 }

14 merge(other , ctx) {

15 label = this.delegate.merge(other.delegate , ctx);

16 return this.wrap(label);

17 }

18 onBefore(ctx) { this.delegate.onBefore(new WrapperContext(this , ctx)); }

19 onAfter(ctx) { this.delegate.onAfter(new WrapperContext(this , ctx)); }

20 }

21 class WrapperContext extends Context {

22 constructor(label , delegate) { this.label = label; this.delegate = delegate; }

23 getFrameLabel () { return this.label.unwrap(this.delegate.getFrameLabel ()); }

24 setFrameLabel(label) { this.delegate.setFrameLabel(this.label.wrap(label)); }

25 clearFrameLabel () { this.delegate.clearFrameLabel () }

26 getStaticLabel () { return this.label.unwrap(this.delegate.getStaticLabel ()); }

27 setStaticLabel(newLabel) { this.delegate.setStaticLabel(this.label.wrap(newLabel)); }

28 clearStaticLabel () { this.delegate.clearStaticLabel () }

29 changeValue () { this.delegate.changeValue (); }

30 get <... >() { return this.delegate.get <...> (); }

31 }

32 class WrapperFactory {

33 constructor(delegateFactory) { this.delegateFactory = delegateFactory; }

34 createLabel () { return new WrapperLabel(this.delegateFactory.createLabel ()); }

35 beforeProgram () {

36 implicitLabel = this.delegateFactory.beforeProgram ();

37 if (implicitLabel != null) {

38 return new WrapperLabel(implicitLabel);

39 }

40 return null;

41 }

42 afterProgram () { this.delegateFactory.afterProgram (); }

43 }

Figure 12: Pseudocode sketching a wrapper analysis.
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1 function asMap(label) {

2 labels = new Map();

3 for (label = this; label != null; label = label.next) {

4 labels.put(label.id, label.delegate);

5 }

6 return labels;

7 }

8 class CombinedLabel {

9 constructor(id, delegate , next) {

10 this.id = id;

11 this.delegate = delegate;

12 this.next = next;

13 }

14 onBefore(ctx) {

15 this.delegate.onBefore(new CombinedWrapperContext(ctx , this.id));

16 if (this.next != null) { this.next.onBefore(ctx); }

17 }

18 onAfter(ctx) {

19 this.delegate.onAfter(new CombinedWrapperContext(ctx , this.id));

20 if (this.next != null) { this.next.onAfter(ctx); }

21 }

22 receive(ctx , idx , val) {

23 newDelegate = this.delegate.receive(

24 new CombinedWrapperContext(ctx , this.id), idx , val);

25 if (this.next != null) {

26 newNext = this.next.receive(ctx , idx , val);

27 } else {

28 newNext = null;

29 }

30 if (newDelegate == null) { return newNext; }

31 return new CombinedLabel(this.id, newDelegate , newNext);

32 }

33 merge(other , ctx) {

34 rhs = asMap(other);

35 combined = new Map();

36 for (label = this; label != null; label = label.next) {

37 mergePartner = rhs.remove(label.id);

38 if (mergePartner != null) {

39 combined.put(label.id, label.delegate.merge(mergePartner , ctx));

40 } else {

41 combined.put(label.id, label.delegate);

42 }

43 }

44 newLabel = null;

45 for (id , label in rhs) { newLabel = new CombinedLabel(id, label , newLabel); }

46 for (id , label in combined) { newLabel = new CombinedLabel(id, label , newLabel); }

47 return newLabel;

48 }

49 }

Figure 13: Pseudocode sketching a wrapper analysis that facilitates the execution of multiple analyses in parallel. Part (1/2)
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50 class CombinedFactory {

51 constructor(delegateFactories) { this.delegateFactories = delegateFactories; }

52 createLabel () {

53 newLabel = null;

54 for (factory in this.delegateFactories) {

55 label = factory.createLabel ();

56 if (label != null) { newLabel = new CombinedLabel(id, label , newLabel); }

57 }

58 return newLabel;

59 }

60 beforeProgram () {

61 newLabel = null;

62 for (factory in this.delegateFactories) {

63 label = factory.beforeProgram ();

64 if (label != null) { newLabel = new CombinedLabel(id, label , newLabel); }

65 }

66 return newLabel;

67 }

68 afterProgram () { for (factory in this.delegateFactories) { factory.afterProgram (); } }

69 }

70 function getFrom(combinedLabel , id) {

71 for (label = combinedLabel; label != null; label = label.next) {

72 if (label.id == id) { return label.delegate; }

73 }

74 return null;

75 }

76 function setLabel(combinedLabel , id, toAdd) {

77 newLabel = null;

78 for (label = combinedLabel; label != null; label = label.next) {

79 if (label.id == id) {

80 if (toAdd != null) { newLabel = new CombinedLabel(id, toAdd , newLabel); }

81 } else {

82 newLabel = new CombinedLabel(label.id, label.delegate , newLabel);

83 }

84 }

85 return newLabel;

86 }

87 class CombinedContext {

88 constructor(id, delegateContext) { this.id = id; this.delegateContext = delegateContext; }

89 getFrameLabel () { return getFrom(this.delegateContext.getFrameLabel (), this.id); }

90 setFrameLabel(label) {

91 this.delegateContext.setFrameLabel(

92 setLabel(this.delegateContext.getFrameLabel (), this.id, label));

93 }

94 clearFrameLabel () { this.setFrameLabel(null); }

95 getStaticLabel () { return getFrom(this.delegateContext.getStaticLabel (), this.id); }

96 setStaticLabel(label) {

97 this.delegateContext.setStaticLabel(

98 setLabel(this.delegateContext.getStaticLabel (), this.id, label));

99 }

100 clearStaticLabel () { this.setStaticLabel(null); }

101 changeValue () { this.delegateContext.changeValue (); }

102 get <... >() { return this.delegateContext.get <... >(); }

103 }

Figure 14: Pseudocode sketching a wrapper analysis that facilitates the execution of multiple analyses in parallel. Part (2/2)
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Table 2: Change in normalized runtime with various taint label implementations when no taint is introduced.

Language Benchmark Vanilla Vanilla Label Pointer Arg Label Vanilla Wrapper Label
Engine Runtime Change Runtime Change Runtime Change

C/C++-JS BinaryTrees 1.18 1.19 +0.8% 1.27 +7.6% 1.20 +1.7%
C/C++-JS Fannkuch 0.96 0.95 -1.0% 0.96 +0.0% 1.00 +4.1%
C/C++-JS Fasta 0.98 0.98 +0.0% 0.97 -1.0% 0.96 -2.0%
C/C++-JS Mandelbrot 1.16 1.16 +0.0% 1.16 +0.0% 1.16 +0.0%
C/C++-JS NBody 1 1.04 1.02 -1.9% 1.02 -1.9% 1.02 -1.9%
C/C++-JS NBody 3 1.02 1.02 +0.0% 1.01 -1.0% 1.02 +0.0%
C/C++-JS NBody 2 0.98 0.91 -7.1% 0.98 +0.0% 0.98 +0.0%
C/C++-JS Pidigits 1.00 0.99 -1.0% 1.01 +1.0% 1.00 +0.0%
C/C++-JS ReverseComplement 1.70 1.60 -5.9% 1.71 +0.6% 1.51 -11.2%
C/C++-JS SpectralNorm 1.07 1.05 -1.9% 1.06 -0.9% 1.05 -1.9%
C/C++ BinaryTrees 1.24 1.24 +0.0% 1.21 -2.4% 1.22 -1.6%
C/C++ Fannkuch 1.04 1.06 +1.9% 1.06 +1.9% 1.04 +0.0%
C/C++ Fasta 1.08 1.09 +0.9% 1.08 +0.0% 1.12 +3.7%
C/C++ Mandelbrot 1.09 1.10 +0.9% 1.09 +0.0% 1.09 +0.0%
C/C++ NBody 1 1.02 1.02 +0.0% 1.02 +0.0% 1.02 +0.0%
C/C++ NBody 3 1.05 1.05 +0.0% 1.04 -1.0% 1.05 +0.0%
C/C++ NBody 2 1.39 1.39 +0.0% 1.39 +0.0% 1.39 +0.0%
C/C++ Pidigits 1.26 1.34 +6.3% 1.35 +7.1% 1.33 +5.6%
C/C++ ReverseComplement 1.63 1.50 -8.0% 1.54 -5.5% 1.52 -6.8%
C/C++ SpectralNorm 1.01 1.01 +0.0% 1.01 +0.0% 1.01 +0.0%
JS BinaryTrees 1.10 1.15 +4.6% 1.19 +8.2% 1.19 +8.2%
JS Fannkuch 0.96 0.96 +0.0% 0.94 -2.1% 0.96 +0.0%
JS Fasta 0.98 0.98 +0.0% 0.97 -1.0% 0.97 -1.0%
JS Mandelbrot 1.01 1.01 +0.0% 1.02 +1.0% 1.02 +1.0%
JS NBody 1 1.00 1.01 +1.0% 1.01 +1.0% 1.00 +0.0%
JS NBody 3 1.04 1.04 +0.0% 1.04 +0.0% 1.04 +0.0%
JS NBody 2 1.46 1.55 +6.1% 1.54 +5.5% 1.03 -29.4%
JS Pidigits 1.00 0.99 -1.0% 1.00 +0.0% 1.00 +0.0%
JS ReverseComplement 1.23 1.22 -0.8% 1.25 +1.6% 1.25 +1.6%
JS SpectralNorm 1.00 1.00 +0.0% 1.00 +0.0% 1.00 +0.0%
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1 class PenumbraLabel {

2 constructor(delegate , sources) { this.delegate = delegate; this.sources = new Set ([... sources ]); }

3 isSink(ctx) {

4 for (let tag of ctx.tags) {

5 switch (tag) {

6 case 'LLVMTags.Intrinsic ':

7 if (ctx.metadata.name.startsWith('__truffletaint_assert_ ')) { return true; }

8 break;

9 case 'AnalysisTags.Builtin ':

10 if ('Taint#assertTainted ' == ctx.source) { return true; }

11 break;

12 }

13 }

14 return false;

15 }

16 wrap(label) {

17 if (label != null) { return new PenumbraLabel(label , [... this.sources ]); }

18 return null;

19 }

20 unwrap(label) { if (label != null) { return label.delegate; } else { return null; } }

21 receive(ctx , idx , val) {

22 if (this.sources.size == 0) {

23 // initialize the source of a new label

24 this.sources.add(ctx.source);

25 }

26 if (this.isSink(ctx)) {

27 console.log('Values from these sources arrived at ' + ctx.source + ':');

28 for (let source of this.sources) { console.log('-> ' + source); }

29 }

30 return this.wrap(this.delegate.receive(new WrapperContext(this , ctx), idx , val));

31 }

32 merge(other , ctx) {

33 const mergedSemantics = this.delegate.merge(other.delegate , ctx);

34 if (mergedSemantics == null) { return null; }

35 return new PenumbraLabel(mergedSemantics , [... this.sources , ... other.sources ]);

36 }

37 onBefore(ctx) { this.delegate.onBefore(new WrapperContext(this , ctx)); }

38 onAfter(ctx) { this.delegate.onAfter(new WrapperContext(this , ctx)); }

39 }

40 class PenumbraFactory {

41 constructor(delegateFactory) { this.delegateFactory = delegateFactory; }

42 createLabel () { return new PenumbraLabel(this.delegateFactory.createLabel (), []); }

43 beforeProgram () {

44 const implicitLabel = this.delegateFactory.beforeProgram ();

45 if (implicitLabel != null) { return new PenumbraLabel(implicitLabel , []); }

46 return null;

47 }

48 afterProgram () { this.delegateFactory.afterProgram (); }

49 }

Figure 15: JavaScript implementation of a dynamic taint analysis inspired by Penumbra [11]. This implementation is a wrapper
analysis similar to the one shown in Figure 12. The WrapperContext is intended as shown in Figure 12, but omitted here for
brevity.
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1 const chainStart = "<start of location chain >";

2 class PathLabel {

3 constructor(flows , location , previous , mergedPrevious) {

4 this.flows = flows; this.location = location;

5 this.previous = previous; this.mergedPrevious = mergedPrevious;

6 }

7 static isSink(ctx) {

8 for (let tag of ctx.tags) { switch (tag) {

9 case 'LLVMTags.Intrinsic ':

10 if (ctx.metadata.name.startsWith('__truffletaint_assert_ ')) {

11 return true; } break;

12 case 'AnalysisTags.Builtin ':

13 if ('Taint#assertTainted ' == ctx.source) { return true; } break; } }

14 return false;

15 }

16 receive(ctx , idx , val) {

17 if (PathLabel.isSink(ctx)) { this.flows.push(this); }

18 if (this.location == ctx.source) { return this; }

19 return new PathLabel(ctx.source , this , null); }

20 merge(other , ctx) { return new PathLabel(this.flows , this.location , this , other); }

21 }

22 class GraphvizGraph {

23 constructor () { this.nodeId = 0; }

24 printHeader () {

25 console.log(); console.log("/****************** recorded flows ******************/");

26 console.log("digraph Flows {"); console.log("node [shape=record]"); }

27 printSubgraph(label) {

28 const curId = this.nodeId ++; let txt = `n${curId} [label="${label.location }\\l`;
29 while (label.previous && label.mergedPrevious == null) {

30 label = label.previous;

31 if (label.location != chainStart) { txt = `${txt}${label.location }\\l`; } }

32 txt = `${txt}"]`; console.log(txt);

33 if (label.previous) {

34 const leftId = this.printSubgraph(label.previous);

35 const rightId = this.printSubgraph(label.mergedPrevious);

36 console.log(`n${curId} -> {n${leftId}, n${rightId }}`); }

37 return curId; }

38 closeGraph () { console.log("}"); }

39 }

40 class LabelFactory {

41 constructor () {

42 this.flows = [];

43 this.startLabel = new PathLabel(this.flows , chainStart , null , null); }

44 beforeProgram () { return null; }

45 createLabel () { return this.startLabel; }

46 afterProgram () {

47 if (this.flows.length > 0) {

48 const graph = new GraphvizGraph (); graph.printHeader ();

49 for (let label of this.flows) { graph.printSubgraph(label); }

50 graph.closeGraph (); } }

51 }

Figure 16: JavaScript implementation of a dynamic taint analysis that tracks the path of tainted values from taint source to
taint sink and prints it as graphviz plot upon program termination.
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