
for each call of C function f:
 decide how f is executed

Current state: Results and restrictions

Interoperability between
Execution Modes on GraalVM

Christoph Pichler
Johannes Kepler University

christoph.pichler@jku.at

Paley Li
Oracle Labs

paley.li@oracle.com

Roland Schatz
Oracle Labs

roland.schatz@oracle.com

Hanspeter Mössenböck
Johannes Kepler University

hanspeter.moessenboeck@jku.at

● Polyglot virtual machine
○ No cross-language overhead

● Highly-optimizing JIT-compiler
○ Dynamic and speculative

➔ Execution of C code via
clang + LLVM bitcode

Why not only native execution (C code)? Why not all functions on GraalVM?

● Existing polyglot systems: Overhead for cross-language calls

C code
double calcDiff(struct Point *p) {
return sqrt(p->x*p->x+p->y*p->y);

}

Python/JS/… pseudo code
p = Point(x: 4, y: -3)
diff = calcDiff(p)

References

Arising problems for switching the execution mode

Our approach: Hybrid execution
→(let) decide execution mode per callee

● e.g. Python/numpy:
○ Few functions access managed objects
○ Majority of C code can be run without GraalVM

● Goal: automatic decision at run time (based on call
frequency, function size, managed accesses)

● Slow warm-up for managed
execution in GraalVM (due
to dynamic compilation)

● Thus: Less managed/more
native code improves
(warm-up) performance

warm-up peak

graalvm.orgssw.jku.at

"ERROR: managed object p not accessible in (natively executed) C code"

No possibility to statically detect managed access
● Native execution whenever possible
● However: Managed access must be done on GraalVM
● Statically undecidable if native function accesses managed

objects (cf. example below) → switch at run time necessary!
struct Point* array[] = …
for(int i=0; i < N; i++) {
sumY += array[i]->y;

}

[0] [1] [2]... [N-1]…array

4 //x
5 //y

{x:7,
 y:3}

C struct JS object
(managed)

Functions with side effects on global variables

static int nElems;

void add(...) {nElems++;...}

void* remove() {nElems––;...}

● Native globals cannot store GraalVM data
● GraalVM globals cannot be accessed from native code
● Enabling both global types at the same time lets globals exist twice

→Might/Will lead to inconsistency for impure functions!
Instruction Execution

mode
native value
of nElems

GraalVM value
of nElems

correct value
of nElems

… … 0 0 0

add(...) GraalVM 0 1 1

remove() native -1 1 0

● graalvm.org
● Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. 2013. One VM to rule them all. In Proceedings of the 2013 ACM international symposium on New ideas, new paradigms, and reflections on programming &

software (Onward! 2013). Association for Computing Machinery, New York, NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581
● Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Würthinger, and Hanspeter Mössenböck. 2016. Bringing low-level languages to the JVM: efficient execution of LLVM IR on Truffle. In Proceedings of the 8th International Workshop on Virtual Machines and Intermediate Languages (VMIL 2016).

Association for Computing Machinery, New York, NY, USA, 6–15. https://doi.org/10.1145/2998415.2998416
● Manuel Rigger, Roland Schatz, Jacob Kreindl, Christian Häubl, and Hanspeter Mössenböck. 2018. Sulong, and thanks for all the fish. In Companion Proceedings of the 2nd International Conference on the Art, Science, and Engineering of Programming (Programming '18). Association for Computing Machinery, New

York, NY, USA, 58–60. https://doi.org/10.1145/3191697.3191726
● T. Pittman. 1987. Two-level hybrid interpreter/native code execution for combined space-time program efficiency. In Papers of the Symposium on Interpreters and interpretive techniques (SIGPLAN '87). Association for Computing Machinery, New York, NY, USA, 150–152. https://doi.org/10.1145/29650.29666
● Manel Grichi, Mouna Abidi, Yann-Gaël Guéhéneuc, and Foutse Khomh. 2019. State of practices of Java native interface. In Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering (CASCON '19). IBM Corp., USA, 274–283.
● Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger, Mikel Luján, and Hanspeter Mössenböck. 2018. Cross-Language Interoperability in a Multi-Language Runtime. ACM Trans. Program. Lang. Syst. 40, 2, Article 8 (June 2018), 43 pages. https://doi.org/10.1145/3201898

Native
execution

?

● Benchmark: JSON parser
written in Python and C

● Forcing 3 (leaf) functions to run
natively already improves
warm-up (1.7x) performance

● Restrictions in current state
○ Manual decision how a callee

is run (GraalVM/native)
○ Pure functions only

GraalVM: all (Python/C) functions run on GraalVM, inlining enabled.
Manual hybrid mode: 3 often called C functions are executed natively, all others on GraalVM. No inlining.
Native: GraalVM accesses natively compiled C code (no polyglot access possible)

native

managed passing managed (e.g. JS) object to C code GraalVM (jvm)
GraalVM (native image)
native

https://www.graalvm.org/
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/3191697.3191726
https://doi.org/10.1145/29650.29666
https://doi.org/10.1145/3201898

