
for each call of C function f:
  decide how f is executed

Current state: Results and restrictions
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● Polyglot virtual machine
○ No cross-language overhead

● Highly-optimizing JIT-compiler
○ Dynamic and speculative

➔ Execution of C code via
clang + LLVM bitcode

Why not only native execution (C code)? Why not all functions on GraalVM?

● Existing polyglot systems: Overhead for cross-language calls

C code
double calcDiff(struct Point *p) {
return sqrt(p->x*p->x+p->y*p->y);

}

Python/JS/… pseudo code
p = Point(x: 4, y: -3)
diff = calcDiff(p)

References

Arising problems for switching the execution mode

Our approach: Hybrid execution
→(let) decide execution mode per callee

● e.g. Python/numpy: 
○ Few functions access managed objects 
○ Majority of C code can be run without GraalVM

● Goal: automatic decision at run time (based on call 
frequency, function size, managed accesses)

● Slow warm-up for managed 
execution in GraalVM (due 
to dynamic compilation)

● Thus: Less managed/more 
native code improves 
(warm-up) performance

warm-up peak

graalvm.orgssw.jku.at

"ERROR: managed object p not accessible in (natively executed) C code"

No possibility to statically detect managed access
● Native execution whenever possible
● However: Managed access must be done on GraalVM
● Statically undecidable if native function accesses managed 

objects (cf. example below) → switch at run time necessary!
struct Point* array[] = …
for(int i=0; i < N; i++) {
sumY += array[i]->y;

}

[0] [1] [2]... [N-1]…array

4 //x
5 //y

{x:7,
 y:3}

C struct JS object
(managed)

Functions with side effects on global variables

static int nElems;

void  add(...) {nElems++;...}

void* remove() {nElems––;...}

● Native globals cannot store GraalVM data
● GraalVM globals cannot be accessed from native code
● Enabling both global types at the same time lets globals exist twice

→Might/Will lead to inconsistency for impure functions!
Instruction Execution 

mode
native value 
of nElems

GraalVM value 
of nElems

correct value 
of nElems

… … 0 0 0

add(...) GraalVM 0 1 1

remove() native -1 1 0
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Native 
execution

?

● Benchmark: JSON parser 
written in Python and C

● Forcing 3 (leaf) functions to run 
natively already improves 
warm-up (1.7x) performance

● Restrictions in current state
○ Manual decision how a callee 

is run (GraalVM/native)
○ Pure functions only 

GraalVM: all (Python/C) functions run on GraalVM, inlining enabled.
Manual hybrid mode: 3 often called C functions are executed natively, all others on GraalVM. No inlining.
Native: GraalVM accesses natively compiled C code (no polyglot access possible)

native

managed passing managed (e.g. JS) object to C code GraalVM (jvm)
GraalVM (native image)
native
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