
1

Incremental Garbage Collection:
The Train Algorithm

Thomas Würthinger

Abstract— Modern programming languages use an automated
way of getting rid of unused objects called garbage collection.
This paper describes the use of incremental garbage collection
and discusses the Train Algorithm in particular. At first the
approach to split memory into blocks is described and then the
reason why trains are needed is revealed. Furthermore another
not very obvious problem of the algorithm and its solution
is shown. Optimization possibilities and some implementation
details as well as a discussion of the Train Algorithm in
distributed systems conclude the article. This paper is the last
part of a three paper series about incremental garbage collection
algorithms. The first two parts ([8], [6]) give an overview of
different algorithms to achieve incrementality, whereas this paper
concentrates on the Train Algorithm.

Index Terms— Memory management

I. INTRODUCTION

IN traditional programming languages it was the respons-
ability of the programmer to explicitely delete an object

before all references to it are lost. This is the source for two
very common errors: Firstly the usage of an already deleted
object will probably lead to a memory exception. Secondly,
if all references to an object are lost before it is deleted, it
will remain in memory until program termination. Long living
applications suffering from that kind of error would need more
and more memory. Then it’s just a matter of time until all
memory is allocated and the program has to stop execution.
The term “garbage” is commonly used for all objects that
will never be reachable again and therefore can be deleted
safely. To free the programmer from the responsability to
delete unused objects, algorithms that automatically detect
which objects are garbage and delete them were developed.
This is called “garbage collection”.

Automated memory management is a widely used approach
in modern programming languages like Java or C# for ex-
ample. The major drawback of this method to get rid of
unused objects is, that non-incremental algorithms need to stop
the main program while collecting all garbage. As memory
requirements grow, also the time the program has to be
stopped is getting longer. This is why incremental garbage
collection has become more and more important. Realtime
applications very often have to react within some milliseconds
and programs with user interaction must not freeze for more
than a small fraction of a second. It would be impossible to use
garbage collection in online role playing games either, none
of the players would accept a delay at each collection run.

Additionally there is another very important advantage of
being able to collect the garbage in small steps. When-
ever objects are distributed among different systems, non-
incremental garbage collection algorithms would cause all of

them to stop at each run. Ideas behind approaches like the
Train Algorithm can be used to solve this problem too.

II. BASIC IDEA

The following chapter contains a description of the main
ideas behind the most commonly used garbage collection al-
gorithms and starts describing the Train Algorithm. Collecting
garbage basically consists of two tasks:

• Detection: Somehow the collection need to distinguish
between living objects and garbage. Instead of finding
dead objects, very often algorithms use a different ap-
proach: All living objects are marked and rescued. Ref-
erences from the outside of object space to an object are
called “root references”. All objects pointed to by such
a reference have to be marked as still alive. Recursively
all objects referenced by any object marked as alive so
far have to be marked too. When no more unmarked but
referenced objects are found this algorithm terminates and
ensures that all garbage objects are not marked or visited.

• Freeing: There are two different possibilities of deleting
the garbage:

– Rescue all objects that are still alive by copying them
to a safe place and free the whole block filled with
garbage objects.

– Free the space of each object that is not marked as
still living.

Fig. 1. Finding objects that are still alive.

In the figure above, the detection of all objects that are
still alive is visualized. First A and G, which are directly
referenced by root pointers, are marked. But also B, which
is reachable from A has to be rescued. Note that the reference

2

circle consisting of the objects C, D and E is correctly treated
as garbage.

The idea of rescuing all referenced objects by copying them
seems to be quite a performance loss at first sight. But there
is also a big advantage of this technique: After each garbage
collection run memory is compacted. Therefore there is no
space between objects and execution is faster. Figure 2 shows
the part of freeing memory by rescuing all living objects. The
term “from space” is used for the memory area currently in
use by the program before the gargabe collection run, whereas
“to space” denotes the rescue area.

Fig. 2. Rescuing referenced objects.

When garbage collection passes must not interrupt for
longer periods of time, the part of detection is the main
problem. It’s difficult to find a good algorithm to do this
in small steps. This is where incremental garbage collection
techniques in general and the Train Algorithm in particular
provide a solution.

A. Splitting Memory into Blocks

The main idea of the Train Algorithm is to split memory
into small blocks and perform the mark and copy garbage
collection strategy seperately for each block. The main pro-
gram is only stopped while processing a single block and the
interruptions are a lot shorter depending on the size of the
memory pieces.

Processing only one block at a time the root references are
not the only pointers coming from the outside of a block.
Therefore we must keep track of all references to objects in

Fig. 3. Splitting object space into blocks.

that block that are not from other objects in the same block.
The set of all such references is called the “remembered set” of
a block. For simplification it is assumed that only three objects
fit into one block. Figure 3 shows a possible distribution of
the objects of the example shown in figure 1 in blocks.

When the garbage collector processes the first block, it uses
the remembered set to find out that only C is referenced from
the outside of the block. Therefore it rescues this object to the
last block. After this the entire block is freed and the object
F is deleted implicitely. The resulting object space after this
first pass is shown in figure 4.

Fig. 4. Result after first pass.

During the next invocation the same procedure is applied
to the next block. Object A is rescued and because object B
is reachable from A it is rescued too. Because there is still
some free space in the last block, no new block needs to be
allocated. Note how the remembered set is updated to reflect
the new situation.

Fig. 5. After second pass.

The remembered set of the next block is empty therefore
the whole block can be safely marked as free.

Fig. 6. Finally space is freed.

This seems to be a quite straight-forward incremental
garbage collection algorithm. But there arise several problems
which are discussed in the following subsections.

3

B. Write Barrier

First of all, how can we realize the remembered set effi-
ciently? The answer is, without hardware support or at least
with the help of the compiler there is no way. While some
garbage collection algorithms need the use of a so-called “read
barrier”, the Train Algorithm needs a “write barrier”. When
a read barrier is used, at each pointer access some special
code must be executed, whereas a write barrier only needs
code execution at pointer assignments. The number of read
accesses to a pointer is usually a lot higher than the number
of write accesses.

Whenever a pointer asignment is made, the algorithm has
to perform two steps:

• Delete old reference: If the old reference was registered
in a remembered set we have to remove it.

• Add new reference: If the new reference points to an
object in a block in the object space, we need to add
the reference to the corresponding remembered set.

The following java pseudocode shows all four possible cases
that can occur when a pointer assigment is made. It is assumed
that a, b and c are put into different blocks:

c l a s s P o i n t e r{
P o i n t e r p ;

}

P o i n t e r a = new P o i n t e r () ;
P o i n t e r b = new P o i n t e r () ;
P o i n t e r c = new P o i n t e r () ;

/ / Case 1 : No th ing has t o be done no p o i n t e r t o
/ / o b j e c t s i n t h e o b j e c t space i s a f f e c t e d .
a . p = n u l l ;

/ / Case 2 : Add b . p t o t h e remembered s e t o f t h e
/ / b l o c k o f a
b . p = a ;

/ / Case 3 : Remove b . p from t h e remembered s e t
/ / o f t h e b l o c k o f a and add i t t o t h e
/ / remembered s e t o f t h e b l o c k c
b . p = c ;

/ / Case 4 : Remove b . p from t h e remembered s e t
/ / o f t h e b l o c k o f c
b . p = n u l l ;

There is a possible optimization if blocks are numbered
and the algorithm always processes the lowest numbered block
first. Then only pointers from higher numbered blocks to lower
numbered blocks have to be recorded in the remembered set.

The remembered set is also used to update references as
objects are copied. This can be quite a performance loss as
discussed in the section about popular objects.

Fig. 7. Pointer needs to be updated.

C. Very large Objects

There is another problem that must be solved when dividing
memory into smaller blocks. Because the block size is fixed,
it is not possible to store big objects that don’t fit into one
block. The solution to this problem is an extra large object
space. Only the reference to the real object is written into the
block. Figure 8 shows the resulting object space.

Fig. 8. How to treat big objects.

D. Problems with Cycles

Until now the presented algorithm has proven quite useful
and small extension solved the problems. But there is still a
very difficult problem to solve: Cycles.

So far all of the examples never had cycles that cover more
than one block. Let’s look at a new one:

Fig. 9. Simple circle example.

Note that in this example the remembered set is optimized
so it contains only references from higher numbered blocks.
Now if the algorithm is applied once, one must admit that very
little changes: The position of the blocks and therefore the
remembered set, see figure 10. But if we do another garbage
collection run, exactly the same object space as shown in figure
9 is the result! This is an endless loop, that can only be broken
if the program frees A, F or G, or allocates a new object.
Otherwise C, E and D are never deleted wasting memory. This
is of course unacceptable!

Fig. 10. After one invocation.

Obviously garbage objects that form a loop over more than
one block will never get deleted. This kind of structure is very

4

likely to occur in real programs. For example if the reference
to a double linked list is lost.

The intuitive solution to this problem is to try to put all
circles into one single block. Because if we can reach a
situation as shown in figure 11 C, E and D would be deleted
correctly. But the upper bound for the size of linked structures
is the size of the available memory, so we wouldn’t be able to
split the memory area into smaller blocks. Let’s assume that
blocks can grow as large as needed, then the problem with
cycles could be solved easily.

Fig. 11. In this case, the algorithm would work correct.

If an object A has to be rescued and it is referenced by
an object of another block, move A into that block. Objects
only pointed to by root references have to be moved to a new
block. If a reference from more than one block points to an
object, it can be moved to any of these blocks.

This strategy ensures that after some iterations dead linked
structures are gathered in the same block. Let’s see how the
algorithm works on the example of figure 9:

Fig. 12. Corrected algorithm, after one invocation.

Because the two objects D and E are only referenced by
C they are not copied into the last block, but are added to
block number 2. Note that this wouldn’t work because of the
assumption that a block can only hold three objects, but a
solution for this problem is given in the next chapter.

The resulting object space after the next step is shown in
figure 13. F and G are both reachable from root pointers
so they are rescued, the rest of the objects are destroyed.
The situation is very similar to figure 11. After this second
invocation C, E and D are freed correctly.

After a finite number of invocations a circle consisting
exclusively of garbage objects is finally collected. At least if
the program does not continuously change the root pointer to
two objects, this very subtle error is discussed in the section
about the correct Train Algorithm. But now a way to rebuild

Fig. 13. Corrected algorithm, during second invocation.

the behaviour of arbitrary sized blocks has to be found. Just
resizing the blocks is not a good solution, because at each
iteration one block is processed and so the collection strategy
would not be incremental.

III. RAILWAY STATION METAPHOR

The Train Algorithm has a solution for the problem of
arbitrary sized blocks and this solution is the reason for its
name.

A. Using Trains

For a better understanding of the algorithm the object space
can be seen as a big railway station. Blocks still have a fix size
and are now called “cars”. They are grouped and form “trains”
that can have any number of cars. There is a remembered set
for each car and also a remembered set for each train that
contains only of references among trains.

B. Example

Figure 14 is based on the same object structure as figure 1,
but now the object space is organized as a railway station. It
consists of an ordered number of trains which can have an
arbitrary number of cars, that are ordered too. In this example
there are two trains. There can be a maximum number of three
objects in a single car, but of course a train can consist of any
number of cars.

Fig. 14. The railway station.

5

The reference set of a train is the union of the reference
sets of all its cars without any intra train reference. In figure
14 object E is for example a member of the reference set of
car 1.1, but it is not a member of the set of train number 1.
Because the algorithm processes always the lowest numbered
car first, only references from higher numbered cars have to
be considered when updating the sets. Therefore object E is
in the remembered set of car 1.1, but C is not a member of
the set of car 1.2.

When the garbage collector processes the first car, object
A is rescued and copied to an entirely new train because it is
referenced by a root pointer. B is only referenced by A and
therefore copied to the same train as A. This is very important
because this way cyclic dead garbage structures end up in a
single train. Because C is referenced by an object of the same
train it is copied to the end of the train. Now the first car is
empty and can be freed. The state of the railway station after
this first pass is shown in figure 15.

Fig. 15. After one invocation.

The remembered sets have been updated accordingly. Now
the first train is not referenced from anywhere outside and so
during the next iteration the garbage collector will safely free
the whole train, resulting in an object space as in figure 16.

Whenever there is a cyclic garbage structure in the first
train, it will never be copied out of this train. After all objects
that are not part of the circle are copied into other trains, it
will be freed. This is quite easy to understand, but will really
every cyclic structure end up in the first train? If a cycle is
split upon serveral trains, the first of those trains will become
the first train after some iterations. After this train is processed
all members of the cyclic structure are distributed among the
other trains containing some structure members. Therefore the
number of trains containing members is decreased by one.

Fig. 16. After two invocations.

When this number reaches one and the train containing now
all members becomes the first train, the garbage structure will
be correctly collected.

Figure 17 shows the example of a cycle consisting of four
objects A, B, C and D. After the first invocation of the
algorithm train 1 is freed and object A is moved to train 2.
The next time A and B are moved to train 3 and during the
next step A, B and C are moved to train 3. Now all members
of the cycle are in one train and the next invocation will free
the structure.

Fig. 17. Example for a cyclic structure.

As it seems this algorithm works fine.

6

C. Algorithm as Text

The following steps describe the train algorithm in textform.
1) Select the lowest numbered train.
2) Free the whole train if the remembered set of the train

is empty and terminate, otherwise go to step 3.
3) Select the lowest numbered car within the train.
4) For each element of the remembered set of that car:

a) If the object wasn’t processed earlier, rescue it by
copying it to a new train if it is a root reference or
to the train of the source object of the pointer.

b) Move all objects within the same car that are
reachable from the rescued object to the same train.

In this step it is necessary to update the affected ref-
erence sets accordingly. If an object is referenced from
more than one train it can be copied to any of them.

5) Free the car and terminate.

D. Algorithm in Java

The following Java pseudocode assumes the availability of
the following classes and functions:

• ObjectSpace
– Car getLowestNumberedCar();

Returns car number 1.1 or null if there is no car in
the object space.

– Train createTrain();
Returns a newly created train that is appended at the
end of the list of trains.

• Car
– Train getTrain();

Returns the train that corresponds to this car.
– Car hasLowerNumber(Car c);

Returns true if this car will be processed before Car
c.

– IList<Reference> getRememberedSet();
Returns a list of references that represent the remem-
bered set of this car.

– void free();
Frees this car.

• Train
– int getRememberedSetSize();

Returns the size of the rembered set of that train.
– void addObject(Object o);

Adds an object to the last car of the train. If the last
car is full, a new car is automatically appended. The
car pointer of the train has to be updated. Also the
reference sets of the old and new car and reference
set sizes of their corresponding trains.

– void free();
Frees the entire train.

• Reference
– Object getSourceObject();

Returns the source of the reference.
– Object getReferencedObject();

Returns the referenced object.
• Object

– IList¡Reference¿ getReferences();
Returns all references that are contained in the ob-
ject.

– Car getCar();
Returns the car that corresponds to this object or null
if this object is not part of the object space.

– bool isReferencedFromTheOutside();
Returns true if this object is referenced from outside
its train.

p u b l i c vo id d o C o l l e c t i o n R u n (O b j e c t S p a c e o b j e c t S p a c e){

Car c a r = o b j e c t S p a c e . getLowestNumberedCar () ;
i f (c a r == n u l l) re turn ;

T r a i n t r a i n = c a r . g e t T r a i n () ;
i f (t r a i n . ge tRememberedSe tS ize () = = 0){

/ / The e n t i r e t r a i n may be f r e e d .
t r a i n . f r e e () ;
re turn ;

}

I L i s t <Refe rence > rememberedSet = c a r . getRememberedSet () ;
f o r (R e f e r e n c e r : rememberedSet){

O b j e c t o = r . g e t R e f e r e n c e d O b j e c t () ;
O b j e c t s o u r c e = r . g e t S o u r c e O b j e c t () ;

i f (o . g e t C a r () ! = c a r){

/ / O b j e c t has been a l r e a d y p r o c e s s e d
i f (o . g e t C a r () ! = s o u r c e . g e t C a r (){

/ / Update remembered s e t s
i f (s o u r c e . g e t C a r () = = n u l l /∗ r o o t r e f e r e n c e ∗ /

| | o . g e t C a r () . hasLowerNumber (s o u r c e . g e t C a r ()){
o . g e t C a r () . getRememberedSet () . add (r) ;

} e l s e {
s o u r c e . g e t C a r () . getRememberedSet () . add (r) ;

}
}

c o n t in u e ;
}

i f (s o u r c e . g e t C a r () = = n u l l){
/ / Root r e f e r e n c e
o b j e c t S p a c e . c r e a t e T r a i n () . a d d O b j e c t (o) ;

} e l s e i f (s o u r c e . g e t C a r () . g e t T r a i n () = = c a r . g e t T r a i n ()){
i f (! o . i s R e f e r e n c e d F r o m T h e O u t s i d e ()){

/ / Move t o t h e end o f t h e same t r a i n
/ / o n l y i f t h e r e i s no r e f e r e n c e from t h e o u t s i d e
s o u r c e . g e t C a r () . g e t T r a i n () . a d d O b j e c t (o) ;

}
} e l s e {

/ / Move t o o t h e r t r a i n
s o u r c e . g e t C a r () . g e t T r a i n () . a d d O b j e c t (o) ;

}

/ / Rescue a l l o b j e c t s r e a c h a b l e from o
Queue<Objec t > queue ;
queue . add (o) ;
whi le (! queue . i sEmpty ()){

O b j e c t c u r = queue . g e t () ;
I L i s t <Refe rence > r e f e r e n c e s = c u r . g e t R e f e r e n c e s () ;

f o r (R e f e r e n c e r : r e f e r e n c e s){
i f (r . g e t S o u r c e O b j e c t () . g e t C a r () = = c a r &&

! r . g e t S o u r c e O b j e c t () . i s R e f e r e n c e d F r o m T h e O u t s i d e ()){

/ / Add r e a c h a b l e o b j e c t t o same t r a i n
o . g e t C a r () . g e t T r a i n () . a d d O b j e c t (r . g e t S o u r c e O b j e c t ()) ;

}
}

}
}

c a r . f r e e () ;
}

7

The code listing shows a simple version of the Train Algo-
rithm, but still it contains an error and some implementation
details of the assumed functions are in need of an explanation.
The following chapters discuss these topics.

IV. CORRECT TRAIN ALGORITHM

One of the most important properties of a garbage collection
algorithm is that all garbage is collected and there cannot occur
any infinite loop. Cyclic structures are handled correctly by the
shown algorithm, but there exists still a more sophisticated
problem.

A. Error

The program can do anything between two garbage collec-
tion runs, for example changing a pointer. For the sake of
argument it is assumed that only one object fits into a single
car. Consider the following Java pseudocode:
c l a s s P o i n t e r{

P o i n t e r p ;
}

P o i n t e r o b j e c t A = new P o i n t e r () ;
P o i n t e r o b j e c t B = new P o i n t e r () ;

P o i n t e r R1 = o b j e c t B ; / / O b j e c t A
R1 . p = o b j e c t A ; / / O b j e c t B

/ / Ensure t h a t t h e r e are no o t h e r
/ / r o o t r e f e r e n c e s t o A or B
o b j e c t A = n u l l ;
o b j e c t B = n u l l ;

whi le (t rue){

/ / Garbage c o l l e c t i o n run

P o i n t e r tmp = R1 . p ;
R1 . p = R1 ;
R1 = tmp ;
tmp = n u l l ;

new P o i n t e r () ; / / T h i s o b j e c t i s n e v e r c o l l e c t e d !
}

If the garbage collection run is always exactly at the marked
position, there will be never any garbage collected and the
program will use more and more memory at each loop pass.

Figure 18 shows the object space after the configuration.
Object B is referenced by a root pointer and object A is
referenced by B.

Fig. 18. Initial object space.

After performing a single garbage collection pass, the
resulting object space is shown in figure 18. Until now, there
are no surprises and if the program wouldn’t change anything,
the next run of the garbage collector would move object B to

the last train. All of the other dead objects would be correctly
collected.

Fig. 19. Object space after first garbage collection run.

But now the program changes the pointers so object A is
now referenced by the root pointer and object B is referenced
by A. Figure 20 shows the resulting configuration.

Fig. 20. Object space after program execution.

When the garbage collecter processes the next car, instead
of moving B to the last train, it notices that B is referenced
from inside the same train and moves it into a new car at the
end of train 1. Now the program changes the pointer again
and the resulting objects space has exactly the same first train
as the one in figure 18, the only difference is that the object
space contains also all newly allocated objects. Therefore the
garbage collector will never delete any unused objects.

Fig. 21. Object space after next garbage collection run.

Obviously this is a serious problem of the algorithm. Of
course it’s very unlikely for a program to behave like that, but
there is still a possibility that this can occur. Fortunately there
is also a solution for this strange case.

Just remember that B was pointed to by a reference from
outside the train and ensure that it is copied out of train number
one even if there are no external references. This is of course
only needed if there were no objects copied out of the first train
in the current pass. Then the first member of the remembered

8

set of the train is saved. When processing a car the algorithm
has to look if there is such a special reference and treat it as
if it would still exist.

B. Corrected Algorithm
Now let’s look how the algorithm of the previous chapter

can be corrected to work even for the subtle case discussed in
the former section.

In the textual representation we just need to add that if the
remembered set of the current car is empty and there exists a
special saved reference which points into the car, this reference
is added to the remembered set. If the special reference points
into the lowest numbered car it has to be removed after the
pass.

The Java pseudocode model of the algorithm needs a new
member variable in the ObjectSpace class which is the special
reference or null if no such reference exists. When the special
reference points into the current car and there is no other
reference to that car from the outside of the current train, this
reference has to be added to the reference list.

Whenever none of the objects of the first car is copied out
of the train, a member of the trains remembered set has to
be saved as the special reference. The remembered set of a
train normally isn’t explicitely saved because it is just the
union of the remembered set of all cars without any intra train
references. Therefore the collector would have to iterate over
all cars, but this could be quite a performance loss. Fortunately
there is a solution: Whenever no objects are copied out of the
first train, set a flag. If the flag is set, the write barrier algorithm
will write the old reference as the special value and clear the
flag again when the next pointer assignment that affects the
first train is made.

V. OPTIMIZATION

This chapter discusses the performance of the Train Algo-
rithm and shows some possible solutions for implemenation
problems as proposed in [1].

A. Getting the Train from an Address
First of all, we need to find a very fast way to get the car

of an object and the train of a car. Obviously this is needed
quite often as shown in the Java pseudocode.

The solution is to choose a car size of the form 2n and
also align cars on a 2n boundary. Then the index of the car
corresponding to an object can be calculated as follows:

i n t a d d r e s s = o b j e c t . g e t A d d r e s s () ;
i n t c a r I n d e x = a d d r e s s >> n ;

A simple right shift does the job and is quite high-
performance. Now we need an array that has an entry for
each possible car index. The size of this array is the amount
of memory available divided by 2n. For each car we save the
number of its train and the number of the car itself.

c l a s s Car{
i n t t r a i nNumber ;
i n t carNumber ;

}

Car [] i n d e x T a b l e = new Car [MEMORY AVAILABLE >> n] ;

The next table shows a possible configuration of the index
table corresponding to the object space shown in figure 22. It
is assumed that the block size is 0xfff (4096).

index train car memory
0 3 2 0x0000 - 0x0FFF
1 0x1000 - 0x1FFF
2 1 1 0x2000 - 0x2FFF
3 2 1 0x3000 - 0x3FFF
4 0x4000 - 0x4FFF
5 3 3 0x5000 - 0x5FFF
6 0x6000 - 0x6FFF
7 1 2 0x7000 - 0x7FFF
8 3 1 0x8000 - 0x8FFF

Note that a simple right shift by 12 gives the table index of
any memory address.

Fig. 22. Possible distribution of cars in memory.

Only the first train and only the first car of a train can be
removed. So a simple linked list of all trains and one for each
train containing all cars will ensure that finding the next car
or the next train will be very fast.

Whenever a car is freed it is removed from the linked list of
the train and added to a freelist. This way it even takes only
a constant amount of time to free an entire train, because the
linked cars can be added entirely to the freelist.

B. Popular Objects

A possible performance problem of the algorithm are so-
called popular objects. Whenever an object is referenced by
lots of other objects it is called popular. Cars containing
popular objects have a very large remembered set and copying
such objects requires lots of pointers to be updated. The
problem hereby is that the number of references pointing to an
object is only bounded by the entire number of references. So
collecting a very popular object can mean a lot of work for the
garbage collector and this would cause the normal program to
stop for an unacceptable long time.

A possible solution to this problem would be to use indirect
addressing. All references to an object go to a place where the

9

real address of the object is saved. This way moving the object
around can be done very fast by simply updating the pointer.
Figure 23 shows this strategy at work.

Fig. 23. Using indirect addressing.

But there is a drawback of this solution. As discussed earlier
pointer access occurs a lot more often than pointer assignments
in the majority of programs. The indirection requires an
additional performance overhead at each read access to a
pointer.

So is there any other chance of handling popular objects?
Simply don’t copy them! Whenever a car contains a popular
object don’t collect it and move it to the end of the train.
Unfortunately, a lot of problems occur if this is done, because
now endless loops and not collected garbage are again possi-
ble. But all of these problems can be solved, however a lot of
effort is needed.

Fig. 24. Popular objects, first problem.

Let’s discuss the first problem: If there is an object in a
car together with a popular object, it will never get collected.
And even worse, all objects that are only referenced by this
object won’t be freed either. Figure 24 shows this problematic

Fig. 25. Popular objects, second problem.

situation. B, C, D, E and F would be garbage but will never get
collected before the popular object A is collected. But because
of the popularity of A this is very likely to take a long time,
maybe even until the end of the program.

There is an additional problem if two popular objects form a
cycle as shown in figure 25. If a new train is started whenever
a popular object has to be moved logically, there is again an
endless loop situation. The whole structure would be garbage
but is never collected.

So first of all, a way to rescue all non-popular objects out
of a car has to be found before moving it. This is not as easy
as it seems at first sight, because if there are popular objects
in a car, the remembered set that has to be processed can be
very large. A seperate remembered set for each object in a
car is needed. Whenever the number of reference to an object
is higher than a certain number it is called popular and the
remembered set for this object is discarded. A lot of memory
is used, but the first problem is solved.

To which train should the car be appended after rescuing
all normal objects? As there is no remembered set for popular
objects, to know this, an additional entry has to be saved for
each object: The train with the highest number that contains
a reference that points to this object. This value can be easily
updated instead of adding an entry to the remembered set.

But the problem prooves to be even more tricky, because
what to do if a car contains more than one popular object?
Cars have to be able to get splitted. After rescuing all non-
popular objects, the physical car is divided into smaller parts,
each part containing a popular object.

Fig. 26. A car split logically into four pieces.

Now special care has to be taken to find out to which car
an object belongs to. The very efficient and simply strategy
as presented in the previous section does not work any more
for split cars. In fact a binary search tree is needed to find
out to which car a given memory address belongs to. Figure
26 shows a car split into four pieces and figure 27 shows the
corresponding binary search tree.

Fig. 27. A car search tree.

Popular objects are rather seldom in normal programs so
the number of popular objects in a car should be small. If the
search tree is balanced, the height of the tree will never be
higher than log2(Maximal number of objects per car).

10

VI. DISTRIBUTED GARBAGE COLLECTION

The following chapter gives an overview of the DMOS (Dis-
tributed Mature Object Space) garbage collection algorithm as
presented by Richard L. Hudson, Ron Morrison, J. Elliot B.
Moss and David S. Munro in 1997. It uses the idea of the Train
Algorithm extended to work in a distributed system. The term
“node” is used for a member of the system and it is assumed
that all nodes can communicate via messages. Furthermore for
simplicity problems that arise if a message does not reach its
destination or if a node does not react are not discussed.

A. Pointer Tracking

The first thing we must worry about when using garbage
collection algorithms in distributed systems is, how to know
about external references from other nodes? Messages have to
be used to keep the knowlegde of each node up to date.

Every object has a so-called home node. The physical
representation of the object resides at the home node and this
node is also responsible for the deletion of the object. All
other nodes may only hold references to the object. A message
protocol is needed for the home node to know which external
references point to its own objects.

• Send event: Whenever A sends a pointer to an object to
another node B it has to inform the home node of the
object.

• Receive event: When B receives the pointer the home
node wants to be informed too.

• Delete event: After B deletes the pointer from its message
buffers it sends another event.

• Add pointer event: For each newly created reference to
an object on a node not being its home node an event is
created.

• Remove pointer event: Analogically for each lost pointer
an event is sent.

Fig. 28. Node 1 sends a pointer to Node 2.

Figure 28 shows a possible scenario. The steps taken by the
nodes in order are:

1) Node 1 sends a message to the home node imforming
it about the pointer transfer.

2) Node 1 sends the pointer to Node 2.
3) Node 2 receives the pointer and sends a message to the

home node about the successful reception.
4) Node 2 tells the home node that another pointer to object

a is installed.

5) Node 2 deletes the pointer from its reception buffer and
sends another message to the home node about this fact.

Whenever the pointer is copied or overwritten at Node 2
the home node is again informed. There are of course several
possible optimizations that minimize the number of messages
sent. Those are discussed in detail in [2].

B. Distributed Trains

Using the Train Algorithm in a distributed system, trains
spanning more than one node are needed. Of course we could
copy objects around and by this ensure that a all objects
of a certain train are on the same node. But this is quite a
performance-loss and very often unwanted. Therefore a system
must be designed to allow cars of trains to be spread upon
nodes.

Each train has a so-called master node. This node created
the train and is responsible for managing the train and adding
new nodes that need to create cars of that train. All nodes
using a certain train are connected using a token ring scheme.
Whenever node wants to join the ring it sends a message to
the master node and then it is added to the ring right after
the master. Each node in the ring knows its successor. The
following Java pseudocode does the job.

c l a s s Node{

Node s u c c e s s o r ;

void wantToJo in (Node n)
{

n . s u c c e s s o r = t h i s . s u c c e s s o r ;
t h i s . s u c c e s s o r = n ;

}
}

Figure 29 shows the scenario when a node wants to enter
the ring.

Fig. 29. Node 4 wants to enter the ring.

A node that does not contain any cars of the train any more
may leave the ring. Note that the master node must never
leave until the train is destroyed, because it is responsible for
welcoming new nodes.

The idea of how a node can leave the ring is as follows: Pass
a token around the ring and when it reaches the predecessor of
the node that wants to leave, this predecessor sets its successor
accordingly. Special care is given to the possibility that more
than one node in a row wants to leave the ring. Then they
will be able to leave simultaneously. A sample implementation

11

is shown as the Java pseudocode below, figure 30 gives a
visualization.

c l a s s Node{

Node s u c c e s s o r ;

void proces sLeaveMessage (Node l e a v e r , Node newSuccesso r)
{

i f (t h i s . s u c c e s s o r == l e a v e r){
/ / We are p r e d e c e s s o r
t h i s . s u c c e s s o r = newSuccesso r ;

} e l s e {
i f (newSuccesso r == t h i s && weWantToLeave ()){

s u c c e s s o r . p roces sLeaveMessage (l e a v e r , s u c c e s s o r) ;
} e l s e {

s u c c e s s o r . p roces sLeaveMessage (l e a v e r , newSuccesso r) ;
}

}
}

}

Fig. 30. Node 1 wants to leave the ring.

One of the main problems that must be solved when there
is no global synchronization is, how to find out when can
a train be discarded? Again the token ring system is used.
An important fact has to be kept in mind when designing an
algorithm for this: Whenever there are no external references
into a train, whatever happens there will be never any external
reference to it. This is simply ensured by the fact that nobody
knows anything about any object of the train, as if the whole
train would not exist.

The first approach would be to simply let the token only go
on to the next node when there are no external references to
the train on this node. After a full circle of the token, the train
is discarded. But this is simply wrong, because even if there
are no external references to the cars at some Node A at a
certain time, because of references to that train at other nodes
new external references to objects at A could be created.

So we can only discard the train if the token passed one
round as proposed and passes an additional round to ensure
that no new external references were added to any node
meanwhile. This results in the following algorithm:

c l a s s T r a i n{
boolean changed ;
i n t n u m b e r O f E x t e r n a l R e f e r e n c e s ;

void r e m o v e E x t e r n a l R e f e r e n c e (){
n u m b e r O f E x t e r n a l R e f e r e n c e s−−;

}

void n e w E x t e r n a l R e f e r e n c e (){
n u m b e r O f E x t e r n a l R e f e r e n c e s ++;
changed = t rue ;

}
}

c l a s s Node{

Node s u c c e s s o r ;

void p r o c e s s D i s c a r d T r a i n (Node sende r , T r a i n t r a i n)
{

i f (! t r a i n . changed){

i f (s e n d e r == t h i s){

/ / The t r a i n can be s a f e l y d i s c a r d e d
t r a i n . d i s c a r d () ;

} e l s e {

s u c c e s s o r . p r o c e s s D i s c a r d T r a i n (sende r , t r a i n) ;
}

} e l s e {
whi le (t r a i n . n u m b e r O f E x t e r n a l R e f e r e n c e s > 0){

w a i t () ;
}

t r a i n . changed = f a l s e ;
s u c c e s s o r . p r o c e s s D i s c a r d T r a i n (t h i s , t r a i n) ;

}
}

}

Any node that knows that there are no external references
into its part of the train can start the process. The table shows
as the token progresses if Node 1 starts by sending a message
to Node 2:

current node N2 N3 N1 N2 N3 N1
sender N1 N2 N3 N1 N1 N1

old changed T T T F F F
new changed F F F F F F

Now the changed value of the sender is false and it is
equal to the current node, so the train may be deleted. If for
example a new reference would have been added to Node 3 in
the meantime, the train would not be freed. When the token
reaches the node, source is set to N3 and the token has to wait
until the external reference is deleted.

C. Unwanted Relative Problem
Because the train that is processed is not always the first

train as in the normal Train Algorithm and more than one
train may be processed at a time, it is possible that new
objects are inserted into the train while trying to look if it
can be discarded. This can only occur if an object has an
unwanted relative in a lower numbered train. Figure 31 shows
the problematic case.

Fig. 31. A has an unwanted relative B.

12

The train of object A could be collected, but if the car of B
is processed meanwhile the situation is as shown in figure 32.
Because there is an external reference to B, the train cannot
be deleted any more!

Fig. 32. Now the train has an external reference.

There is no easy possibility to bar the other collectors from
adding cars to a certain train. A possible solution is to track
all objects that are added to the train after the changed bit is
set to false. If the train is really collected those objects must
be rescued by forming a new train.

VII. CONCLUSION

The Train Algorithm is nowadays used very often in com-
bination with other garbage collection algorithms. The Java
Hotspot virtual machine for example uses a collection strategy
as shown in figure 33.

Fig. 33. Garbage collection, Java Hotspot VM [4].

Whenever a system needs to react very fast it is indispens-
able to use an incremental strategy. The Train Algorithm gives
such an incremental garbage collection strategy that can also
be used in distributed systems.

LIST OF FIGURES

1 Finding objects that are still alive. 1
2 Rescuing referenced objects. 2
3 Splitting object space into blocks. 2
4 Result after first pass. 2
5 After second pass. 2
6 Finally space is freed. 2
7 Pointer needs to be updated. 3
8 How to treat big objects. 3
9 Simple circle example. 3
10 After one invocation. 3
11 In this case, the algorithm would work correct. . 4
12 Corrected algorithm, after one invocation. 4
13 Corrected algorithm, during second invocation. . 4
14 The railway station. 4
15 After one invocation. 5
16 After two invocations. 5
17 Example for a cyclic structure. 5
18 Initial object space. 7
19 Object space after first garbage collection run. . 7
20 Object space after program execution. 7
21 Object space after next garbage collection run. . 7
22 Possible distribution of cars in memory. 8
23 Using indirect addressing. 9
24 Popular objects, first problem. 9
25 Popular objects, second problem. 9
26 A car split logically into four pieces. 9
27 A car search tree. 9
28 Node 1 sends a pointer to Node 2. 10
29 Node 4 wants to enter the ring. 10
30 Node 1 wants to leave the ring. 11
31 A has an unwanted relative B. 11
32 Now the train has an external reference. 12
33 Garbage collection, Java Hotspot VM [4]. 12

REFERENCES

[1] S. Grarup and J. Seligmann, Incremental Mature Garbage Collection.
Department of Comp. Science, Aarhus University, 1993.

[2] R. L. Hudson, R. Morrison, J. E. B. Moss, D. S. Munro, Garbage
Collecting the World: One Car at a Time. Proc. OOPSLA 97, pp.162-
175.

[3] R. Jones, R. Lins, Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management.. John Wiley, 1996.

[4] S. Meloan, The Java HotSpot Performance Engine: An In-Depth Look.
http://java.sun.com/developer/technicalArticles/
Networking/HotSpot/, 1999.

[5] M. C. Lowry, A New Approach to The Train Algorithm For Distributed
Garbage Collection. School of Comp. Science, University of Adelaide,
2004.

[6] R. Schatz, Incremental Garbage Collection II. Seminar aus Softwareen-
twicklung: Garbage Collection, 2006.

[7] R. Sedgewick, Algorithmen. Pearson Studium, 2002.
[8] C. Wirth, Incremental Garbage Collection I. Seminar aus Softwareen-

twicklung: Garbage Collection, 2006.

