
Applying Optimizations for
Dynamically-typed Languages to Java

Matthias Grimmer
Oracle Labs
Austria

matthias.grimmer@oracle.com

Stefan Marr
Institute for System Software

Johannes Kepler University, Linz
stefan.marr@jku.at

Mario Kahlhofer
Institute for System Software

Johannes Kepler University, Linz
mario.kahlhofer@jku.at

Christian Wimmer
Oracle Labs
United States

christian.wimmer@oracle.com

Thomas Würthinger
Oracle Labs
Switzerland

thomas.wuerthinger@oracle.com

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University, Linz
hanspeter.moessenboeck@jku.at

ABSTRACT
While Java is a statically-typed language, some of its features make
it behave like a dynamically-typed language at run time. This in-
cludes Java’s boxing of primitive values as well as generics, which
rely on type erasure.

This paper investigates how runtime technology for dynamic-
ally-typed languages such as JavaScript and Python can be used
for Java bytecode. Using optimistic optimizations, we specialize
bytecode instructions that access references in such a way, that
they can handle primitive data directly and also specialize data
structures in order to avoid boxing for primitive types. Our evalu-
ation shows that these optimizations can be successfully applied
to a statically-typed language such as Java and can also improve
performance significantly. With this approach, we get an efficient
implementation of Java’s generics, avoid changes to the Java lan-
guage, and maintain backwards compatibility, allowing existing
code to benefit from our optimization transparently.

CCS CONCEPTS
• Software and its engineering → Compilers; Interpreters; Dy-
namic compilers; Runtime environments; Object oriented languages;

KEYWORDS
Java; bytecode interpreter; dynamic compilation; virtual machine;
language implementation; optimization

ACM Reference Format:
Matthias Grimmer, StefanMarr,Mario Kahlhofer, ChristianWimmer, Thomas
Würthinger, and Hanspeter Mössenböck. 2017. Applying Optimizations for
Dynamically-typed Languages to Java. In Proceedings of ManLang 2017,
Prague, Czech Republic, September 27–29, 2017, 11 pages.
https://doi.org/10.1145/3132190.3132202

ManLang 2017, September 27–29, 2017, Prague, Czech Republic
© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
ManLang 2017, September 27–29, 2017 , https://doi.org/10.1145/3132190.3132202.

1 INTRODUCTION
Java is a statically-typed programming language that is executed
by highly efficient and mature virtual machines. Despite its success,
various issues have been identified with Java’s design including
its type-erasure approach to generics, its missing compound value
types, and the fact that primitives and arrays are treated differently
from other objects.

Java implements generics by erasing type parameters to their
bound (Object) when transforming source code to Java bytecode.
In contrast, C++ uses compile-time template expansion for generics
and generates native code that is separately optimized for each ex-
pansion. While this approach allows for type-specific optimizations
and avoids issues with respect to primitive type parameters and
generic arrays, code is not shared between separate expansions,
which has a negative effect on the footprint of applications.

Also, Java distinguishes primitive types from references types,
which requires it to use boxed representations for primitives in
the context of generics. To ease their use at the language level,
Java automatically boxes and unboxes primitives where necessary.
This so-called autoboxing comes with a memory and performance
overhead caused by the wrapper objects for the primitive values. In
order to overcome these issues, the project Valhalla1 explores the
approach of generating different bytecodes depending on whether
the generic type parameter is a primitive type or a reference type,
which is a restricted version of C++’s approach. Project Valhalla’s
requirement is to maintain compatibility with existing bytecode.
Another requirement is to avoid imposing Java semantics on the
Java Virtual Machine (JVM). However, Project Valhalla’s approach
has implications for Java itself: primitive types and reference types
do not have a common super type, hence, the wildcard operator (?)
has to be deprecated and cannot be used anymore in this scenario.

In this paper, we present an alternative solution. We demon-
strate a novel approach to executing JVM bytecode and show that
optimizations designed for dynamically-typed languages can be
used to implement Java’s generics more efficiently. Furthermore,
our approach avoids changes to the Java bytecode and the Java lan-
guage itself, whichmakes it a completely transparent and backward-
compatible solution.

1Project Valhalla, http://openjdk.java.net/projects/valhalla/

1

https://doi.org/10.1145/3132190.3132202
https://doi.org/10.1145/3132190.3132202
http://openjdk.java.net/projects/valhalla/


ManLang 2017, September 27–29, 2017, Prague, Czech Republic Grimmer et al.

To demonstrate our approach, we use Truffle [30, 31], a language
implementation framework that was designed for the implementa-
tion of dynamically-typed languages on top of a JVM, and use it
to implement a Java bytecode interpreter, which we call TruffleBC.
Our performance evaluation shows that it is possible to outper-
form state of the art JVMs by applying code and data optimizations
designed for dynamically-typed languages to a statically-typed
language such as Java. To summarize, our contributions are:

• We use VM and compiler technology originally designed for
dynamically-typed languages to efficiently execute Java byte-
code. Specifically, we introduce a Truffle-based Java bytecode
interpreter and show that dynamic compilation techniques
can be applied to statically-typed languages such as Java to
improve their performance significantly.
• We use Java’s generics as a case study and demonstrate how
data structure specialization and type specialization of Java
bytecode can improve the performance of Java programs.
• We provide a performance evaluation (peak performance
and start-up performance) that compares TruffleBC to Ora-
cle’s HotSpot VM, which confirms our claim that dynamic-
language VM technology can be efficiently used for Java.

2 BACKGROUND AND PROBLEM
STATEMENT

The Java Virtual Machine (JVM) is a multi-language platform that
supports executing various programming languages that compile
to JVM bytecode. As a background for the remainder of the paper,
we briefly explain Java bytecode and how it is normally executed by
a JVM. Based on that, we describe how Java generics are currently
implemented and outline the issues with the current approach. Fi-
nally, we explain Truffle and Graal, a language implementation
framework that we use to implement an alternative execution envi-
ronment for Java bytecode.

2.1 The Java Virtual Machine and Java
Bytecode

Java bytecode is an instruction set for a virtual stack machine.
This means that the operations are generally designed to consume
operands from the stack and to push results back onto it. More
specifically, the JVM distinguishes between three locations where
data is stored: the operand stack of the stack machine, a method-
local frame that contains local variables, and the Java heap where
objects are stored. Java handles primitive types differently from ref-
erence types, which is also reflected in the bytecode. Java bytecode
defines different instructions for working with primitives and with
references. The instructions have prefixes and/or suffixes that refer
to the types of their operands. For example, the iload instruc-
tion is of type int; it loads an int variable and pushes it onto
the operand stack. In contrast, the aload instruction is of type
reference; it loads a local reference variable and pushes it onto the
operand stack.

2.2 Problem Statement
As sketched in the introduction, Java’s design of handling primitive
values and references differently poses problems for optimizing
generics.

While Java generics are type checked at compile time, type pa-
rameters are then removed (type erasure) so that they are not avail-
able at the JVM level anymore. Thus, ArrayList<Integer>
is compiled to the raw type ArrayList and the type parame-
ter Integer is erased to its bound, namely Object. Inside the
raw type all occurrences of the type parameter are represented as
Object, so that the class ArrayList (see Listing 1) internally
uses an Object[] to store its values.

Since only reference types can be mapped to Object, type pa-
rameters must be reference types in Java. Primitive types have to
be boxed before they can be used as type parameters. Java’s auto-
boxing makes it convenient to use generics also with primitives
(see Listing 1). However, autoboxing causes a significant perfor-
mance and memory overhead: it creates extra work for the garbage
collector and requires an additional indirection during access. In
particular, Object[] are less efficient to use than int[]. Our
goal is to eliminate this overhead with dynamic compilation tech-
nology, which is normally used for dynamically-typed languages.
We describe our approach in more detail in Section 4.

2.3 Truffle and Graal
For our case study, we use the Truffle [31] language implementation
framework and build an interpreter for Java bytecode. We do not
extend or modify an existing state-of-the-art JVM (e.g. Oracle’s
HotSpot VM) because this would require a complex re-engineering
of this VM. We would need to adapt the interpreter, at least one of
the two just-in-time compilers, the object representation inmemory,
and the garbage collector to experiment with our optimizations.
Using Truffle allows us to easily implement our optimizations and
also to reuse all other VM components (dynamic compilers, garbage
collector, etc.) without modification.

Truffle is a platform for building high-performance language
implementations in Java. Truffle language implementations are
interpreters, running on top of a Java Virtual Machine. Source code
(or any other code representation - in our case Java bytecode) is
transformed to a graph of nodes (e.g. an abstract syntax tree), which
can then be executed and is eventually dynamically compiled by the
Truffle framework. Nodes within this graph represent instructions
of the guest language, which can be evaluated. All nodes extend a
common Node class and have a method that evaluates them. The
whole graph is evaluated by executing these methods on the nodes
recursively, starting with the root node. Note, for most purposes
the graph has a tree structure. Thus, in the remainder of the paper
we consider it to be a tree, even if it might technically not be one
in the strict sense.

An important characteristic of Truffle trees is that they are self-
optimizing [32]. Self-optimizations (we will also call them special-
ization) are typically based on profile information (e.g., type in-
formation) collected during execution. Based on this information,
Truffle languages try to use the most specific operation possible
in the context of an executing program to avoid the overhead of
a more general solution. For example, Truffle trees specialize as

2



Applying Optimizations for
Dynamically-typed Languages to Java ManLang 2017, September 27–29, 2017, Prague, Czech Republic

1 List<Integer> list = new ArrayList<>(10); // Internally backed by an Object[]
2 list.set(0, 42); // auto-box 42 to an Integer object
3 // ...
4 int i = list.get(0); // auto-unbox 42

Listing 1: Java application using an ArrayList.

a reaction to type feedback, replacing a dynamically-typed add
operation node (with different semantics depending on the types of
the operands) that receives two integers with a node that only per-
forms integer addition and is thus simpler. The Truffle framework
encourages the optimistic specialization of trees, where nodes can
be replaced with a more specialized (and thus more efficient) node.
If the assumptions on which the specialization was based turn out
to be wrong during further execution, a specialized node has to be
reverted back to a form that provides more general functionality.
Specialization via tree rewriting is a general mechanism for dynam-
ically optimizing code at run time. This technique is the foundation
for our optimization of bytecodes for reference types at run time.

To represent method activations, the Truffle framework has the
notion of a Frame. It is essentially an array holding local variables
and other data of a method, which provides support for specializing
its values to primitive types to avoid boxing. Similarly, to implement
dynamic data structures efficiently, Truffle provides an object stor-
age model [29], which is based on a type called DynamicObject.
The DynamicObject supports dynamic resizing of objects and
allows adding and removing members at run time, which is opti-
mized using maps [4]. Both mechanisms are used by us to represent
method activations and objects efficiently and to enable our opti-
mizations.

To achieve high performance, Truffle partially evaluates [30, 31]
the trees and dynamically compiles them to optimizedmachine code.
For dynamic compilation it uses the Graal compiler [9, 10, 12, 24–
26]. Partial evaluation means that the Graal compiler inlines all
node execution methods of a tree into a single method and hereby
assumes that the tree remains stable. The compiler inserts so-called
guards that check if the speculative assumptions still hold at run
time. If one of the guards would fail (i.e., a node or a subtree would
rewrite), then the machine code deoptimizes [15]. Deoptimization
transfers the control back from compiled code to the interpreted
tree, at which specialized nodes are reverted to a more general
version. Truffle and the Graal compiler are part of the Graal VM,
a modification of the HotSpot VM: it adds the Graal compiler and
Truffle, but reuses all other parts of the HotSpot VM, including the
garbage collector and the interpreter.

3 JAVA BYTECODE EXECUTION ON TOP OF
TRUFFLE

This section describes the implementation of TruffleBC. It details
our approach to implement an efficient execution system for Java
bytecode with techniques for dynamic languages on top of Truffle.

A high-level overview of the architecture is given in Figure 1.
TruffleBC is running on the Graal VM. To load bytecode into Truf-
fleBC, we use the JVM class loader. However, bytecode is not directly
executed on the JVM. Instead, TruffleBC parses the bytecode and

Graal VM

Graal 
compiler

Garbage 
collector

Class 
loader

…

Truffle

Class 
files

TruffleBC

uses

Java 
heap

allocates
data

loads

tools.jar
OpenJDK

uses

compiles
ASTs

Figure 1: Layers of a Truffle language implementation: Truf-
fleJava is hosted by the Truffle framework on top of the
Graal VM.

transforms it to a different representation (see Section 2.3) which is
then interpreted.

To represent Java objects, we use Truffle’s DynamicObject
type (cf. Section 2.3). The stack for local variables and the operand
stack are represented with Truffle’s Frame objects. Objects of type
DynamicObject and Frame are regular Java objects that are
allocated on the heap. Hence, TruffleBC reuses the garbage collector
of the underlying Graal VM.

3.1 Local Variables, Operand Stack, Object
Allocations

In Java bytecode, the number of local variables as well as the maxi-
mum size of the operand stack can be determined statically from the
bytecode. Therefore, TruffleBC allocates a Frame object for every
method invocation which is large enough to hold the local variables
of this method as well as the operand stack. Taking Listing 2 and
Listing 3 as an example, TruffleBC allocates one slot in the Frame
to store the local variable i and another two slots for the operand
stack, which has a maximum size of 2 to represent the comparison
of i and 1000.

To represent a Java object as a DynamicObject, we add a slot
for every field of the object as well as a slot for its class, which is also
represented as a DynamicObject. Using DynamicObjects in-
stead of a direct mapping to Java objects allows us to change the
type of fields at run time, which we need in order to specialize data
at run time (see Section 4).

3



ManLang 2017, September 27–29, 2017, Prague, Czech Republic Grimmer et al.

1 public static void foo() {
2 int i = 0;
3 do {
4 i++;
5 } while(i < 1000);
6 }

Listing 2: Java function foo with a counter variable
incremented in a loop.

1 iconst_0
2 istore_0
3 iinc 0, 1
4 iload_0
5 sipush 1000
6 if_icmplt 2
7 return

Listing 3: Java Bytecode of function foo.

1 int bci = 1;
2 while (bci != -1) {
3 int next = bcNodes[bci].execute(frame);
4 bci = bcNodes[bci].successors[next];
5 }

Listing 4: The bytecode dispatch node.

3.2 Interpretation of Java Bytecode
TruffleBC provides a Truffle Node implementation for all 198 Java
bytecodes, where each node implements the semantics of the corre-
sponding bytecode in its execute method. The Frame object of
a Java function is passed as an argument to the executemethods,
which allows them to access local variables as well as the operand
stack.

To support any unstructured control flow [20] that can be ex-
pressed with Java bytecodes, TruffleBC uses a so-called bytecode
dispatch node. This node is the root node in each function. A byte-
code dispatch node has an array of nodes called bcNodes to hold
all bytecode nodes of a function. As sketched in Listing 4, the
executemethod of the bytecode dispatch node has a loop, which
executes one of the bytecode nodes in each iteration, starting from
bytecode index one (bci = 1).

Each bytecode node has a successors array of indexes iden-
tifying its possible successor bytecodes. Most nodes have only one
successor, hence the int[] has usually only one element. Using
Listing 3 as an example, the bytecodes iconst_0, istore_0,
iinc, iload_0, and sipush have just a single unconditional
successor. In contrast to that, if_icmplt has two possible suc-
cessors. Depending on the result of the comparison, the control
flow can be transferred to bytecode index 3 or index 7. Hence, the
successors array for if_icmplt is [3, 7]. The array of
successors is important for dynamic compilation (see Section 3.3);
it allows the compiler to determine all possible successor bytecodes.
When executing a bytecode node, the execute method returns
an index to the successors array, which is then used to retrieve
the successor bci. Execution continues until bci = -1, which
indicates a return statement.

With respect to the example in Listing 3, the bytecode dispatch
node transfers execution between the seven bytecode nodes with

iconst_0
successors = [2]

istore_0
successors = [3]

iinc 0, 1
successors = [4]

iload_0
successors = [5]

sipush 1000
successors = [6]

return
successors = [-1]

BC
Di
sp

at
ch

N
od

e

function
foo

1

2

3

4

5

6

7

if_icmplt 2
successors = [3, 7]

Figure 2: Truffle Graph for function foo of Listing 3.

indices [1, 2, 3, 4, 5, 6, 7]. Figure 2 shows the byte-
code dispatch node for the bytecode in Listing 3 and illustrates the
control flow with red arrows.

Execution starts with bci = 1: iconst_0 is executed. The
iconst_0 node has a direct successor (bci = 2, hence the
sucessors = [2]). The bytecodes are consecutively executed
until the if_icmplt node is reached. This node has two possible
successors (sucessors = [3, 7], the loop body at bci = 3
and the loop exit at bci = 7). The bytecode dispatch node exe-
cutes the if_icmplt node and sets the bci to either 3 or 7 after
accessing the successors array. The successor of the return
node is bci = -1, which signals a return from the function.

3.3 Compilation
If a method has been executed for a certain number of times, Truffle
triggers its compilation by the Graal compiler, which inlines all
execute methods of the graph nodes and all methods they call
into a single compilation unit. When compiling the bytecode dis-
patch node, Graal unrolls the loop (while (bci != -1), see
Listing 4) until all paths through a function are expanded.

For the function in Figure 3, the compiler starts at bci = 1
and determines the successor of the first node (iconst_0), which
is the node istore_0. It then peels the first iterations and moves
the execution of iconst_0 and istore_0 out of the loop. List-
ing 5 shows the loop after this peeling. Next, the compiler peels
the execution of iinc, iload_0, and sipush out of the loop.
At bytecode if_icmplt the compiler sees that this bytecode has
two possible successors, namely bci = 3 (i.e., the loop body)

4



Applying Optimizations for
Dynamically-typed Languages to Java ManLang 2017, September 27–29, 2017, Prague, Czech Republic

1 bcNodes[1].execute(frame); // iconst_0
2 int next = bcNodes[2].execute(frame); // istore_0
3 int bci = bcNodes[2].successors[next];
4 while (bci != -1) {
5 next = bcNodes[bci].execute(frame);
6 bci = bcNodes[bci].successors[next];
7 }

Listing 5: Step 1: Unrolling the loop of the basic block
dispatch node.

1 bcNodes[1].execute(frame); // iconst_0
2 bcNodes[2].execute(frame); // istore_0
3 merge_bci_3:
4 bcNodes[3].execute(frame); // iinc 0, 1
5 bcNodes[4].execute(frame); // iload_0
6 bcNodes[5].execute(frame); // sipush 1000
7 int next = bcNodes[6].execute(frame);// if_icmplt 2
8 int bci = bcNodes[6].successors[next];
9 if (bci == 3) {
10 goto merge_bci_3;
11 } else if (bci == 7) {
12 while (bci != -1) {
13 next = bcNodes[bci].execute(frame);
14 bci = bcNodes[bci].successors[next];
15 }
16 }

Listing 6: Step 2: Unrolled loop of the basic block dispatch
node.

1 bcNodes[2].execute(frame); // iconst_0
2 bcNodes[3].execute(frame); // istore_0
3 merge_bci_3:
4 bcNodes[3].execute(frame); // iinc 0, 1
5 bcNodes[4].execute(frame); // iload_0
6 bcNodes[5].execute(frame); // sipush 1000
7 int next = bcNodes[6].execute(frame);// if_icmplt 2
8 int bci = bcNodes[6].successors[next];
9 if (bci == 3) {
10 goto merge_bci_3;
11 } else if (bci == 7) {
12 bcNodes[7].execute(frame); // return
13 return;
14 }

Listing 7: Final stage: Unrolled loop of the basic block
dispatch node.

and bci = 7 (i.e., the loop exit). The compiler always checks if a
path has already been expanded (which is the case for successor
bci = 3). In that case it merges this path with the existing path
by inserting a backjump (goto merge_bci_3), which guaran-
tees that the loop expansion terminates. Listing 6 shows the loop
after peeling if_icmplt. Finally, the compiler peels the return
bytecode out of the loop. This bytecode node does not have any
successors (indicated by a successor with bci = -1), which ter-
minates the loop and the compiler finishes loop unrolling because
all paths are expanded (see Listing 7). After unrolling this loop,
the compiler further optimizes the code and eventually produces
machine code.

3.4 Completeness
TruffleBC does not yet support all Java features. Our focus was on
core features of Java, which are relevant to evaluate the specializa-
tion of bytecode and data at run time. Currently, TruffleBC does
not support:
• Reflection: Java’s reflection API is not yet implemented.
We do not foresee any difficulties with it with respect to the
focus of this paper, since solutions have already been shown
for dynamic languages such as Python and JavaScript, which
have similar reflective capabilities.
• Multi-threading: Threading is not yet supported. While
thread-safety is a major concern for optimizations as dis-
cussed by Daloze et al. [7], we consider it out of scope for
this paper.
• JNI: Native calls to C/C++ code via JNI are not yet fully
supported. The C/C++ code is executed by Sulong [22], an
implementation of C/C++ on top of Truffle. The native in-
terface itself is implemented using Truffle’s cross-language
interoperability mechanism [13, 14].
• Security and Serialization: In contrast to a production
JVM, TruffleBC does not yet implement a security manager
as a production JVM does. It also does not yet support object
serialization that is compatible with normal JVM semantics.
However, we consider both aspects orthogonal to the ideas
discussed in this paper.

4 SELF-OPTIMIZING JAVA BYTECODE
EXECUTION

A Truffle language implementation uses two different levels of op-
timization: language implementers optimize at the graph level (i.e.,
they specialize nodes and data by implementing possible optimiza-
tions), while the Truffle framework itself provides partial evaluation
and dynamic compilation of Truffle trees. Optimizations at graph
level allow us to apply optimizations that go beyond the current
level of optimizations for statically-typed languages.

This section describes the three optimizations that we apply
to Java bytecode: data specialization, specialization of reference
bytecodes, and removal of autoboxing and autounboxing. To better
illustrate these optimizations we use the example in Listing 1 and
decompose it into the following parts:
• Listing 8: The example shows the ArrayList constructor,
which allocates a new Object[] using the anewarray
bytecode.
• Listing 9: Because of type erasure, ArrayList::set re-
quires an Object argument. Hence, the Java compiler au-
tomatically boxes the value 42 by inserting an invoke of
Integer.valueOf, which returns the boxed object rep-
resentation of 42.
• Listing 10: The method ArrayList::set contains an
aastore instruction thatwrites the value to theObject[].
• Listing 11: The method ArrayList::get contains an
aaload instruction that loads the value from theObject[].
• Listing 12: The call to ArrayList::get returns a boxed
integer value, which is automatically unboxed. The compiler
inserts a call to intValue() on the boxed receiver value.
The primitive value is then stored to variable i.

5



ManLang 2017, September 27–29, 2017, Prague, Czech Republic Grimmer et al.

1 iload_1 // push size onto the operand stack
2 anewarray // allocate a java/lang/Object array

Listing 8: ArrayList constructor.

1 bipush 42
2 invokestatic // Method Integer.valueOf

Listing 9: Auto-boxing of argument 42 for
ArrayList::set.

1 getfield // elementData
2 iload_1 // push index argument onto the stack
3 aload_2 // push value argument onto the stack
4 aastore // store value into array

Listing 10: Array store in method ArrayList::set.

1 getfield // elementData
2 iload_1 // push index argument onto the stack
3 aaload // load element from array

Listing 11: Array load in method ArrayList::get.

1 checkcast // check if result is Integer object
2 invokevirtual // Integer.intValue
3 istore_1 // store restult into variable i

Listing 12: Auto-unboxing of return value and storing it to
variable i.

4.1 Data specialization
To specialize the representation of a variable, an object field, or an
element of an Object[], we use run-time information to confirm
that all previous accesses to this item have seen it as being of a
specific primitive type. If that is the case, we specialize its represen-
tation and store the unboxed primitive value rather than the boxed
version. TruffleBC applies this specialization to all data (local vari-
ables, array elements, and object fields) with a reference type. For
local variables, we specialize the slots of the corresponding Frame
object according to the types of values that are written to them. For
object fields, we specialize the slots of the DynamicObject that
is created whenever a class is instantiated. If a field or a variable
is used for different primitive types and/or reference types, we re-
vert the specialization and use type Object instead. This prevents
re-specialization cycles and ensures that the optimization reaches
a fixpoint. This strategy is identical to the one used by dynamic
languages on top of Truffle [29]. Uninitialized Frame slots as well
as uninitialized fields of a DynamicObject are marked, which
allows us to return null if an uninitialized value is read.

We also optimize arrays whose element type is a reference type.
The optimization is based on a simple storage strategy, similar to
the approach of Bolz et al. [2] for dynamic languages. To minimize
transitions between different storage strategies, we use type me-
mentos [6] and record the types of all values that have been stored
into an array object. This type information is fed back to the allo-
cation site (in our case to the anewarray bytecode, Listing 8) of
the array and if it indicates that all allocated arrays only contained
primitive values of the same type, new array allocations at that
site will use a primitive array instead of an Object[]. We apply
this specialization per allocation site. Compiler optimizations like

method inlining and splitting duplicate these allocation sites such
that the specialization is performed locally for each replicated allo-
cation site. For example, we aggressively inline the constructor of
ArrayList, such that different ArrayList instances can spe-
cialize on different element types. If the Java program attempts to
store a value with a different (possibly non-primitive) type into the
array later on, the array will be reverted to an Object[]. We also
deoptimize to Object[] if the user program attempts to store an
explicitly boxed primitive value (e.g. java.lang.Integer), i.e.,
a boxed value that was explicitly allocated using the new keyword
rather than by Java’s autoboxing mechanism2. TruffleBC can alter
the representation of arrays at runtime by wrapping an array into a
DynamicObject. The DynamicObject wraps the array data
(e.g., an Object[] or an int[] in the specialized case) includ-
ing type information and the initialization state of all elements
in order to be able to provide the same functionality as normal
Java arrays (e.g., support for type checks). Again, to prevent re-
specialization cycles, we pessimistically allocate Object[] once
an array specialization was reverted.

TruffleBC ensures correct Java semantics by tracking whether
the data has been initialized. For example, if TruffleBC specializes
an Object[] to an int[], it is necessary to keep track of unini-
tialized elements because reading an uninitialized array element
must return null rather than an integer value 0.

4.2 Specialization of reference bytecodes
We also specialize reference bytecodes so that they can work with
primitive values as well. We specialize such bytecodes to a ver-
sion that uses the primitive types that we observe at run time. For
example, if the element value of an aastore bytecode has the
primitive type int, we specialize the instruction such that it can
store the primitive int value directly into an array. If the behavior
of the program changes during later execution in the sense that the
value of the aastore instruction is not primitive anymore, we
revert the bytecode specialization back to the generic case that can
deal with both, reference types and primitive types. TruffleBC can
specialize the following bytecodes to primitive types:
• Array accesses via aastore and aaload.
• Local variable accesses via astore and aload.
• Field accesses via putfield or putstatic
and getfield or getstatic.
• The return instruction areturn.
• The type check via checkcast or instanceof treats
primitive values like their boxed counterpart.
• The instruction if_acmp for performing a reference
comparison 3

2We distinguish between auto-boxing (implicit; Java inserts e.g.
java.lang.Integer.valueOf) and an allocation of an object that boxes a prim-
itive value (explicit; the Java developer writes e.g. new java.lang.Integer):
We only specialize implicitly boxed primitives to primitive values. Our optimizations
do not trigger for explicitly allocated boxed primitive values.
3Regarding the object identity of boxed primitives, the Java Language Specification
discourages “[...] any assumptions about the identity of the boxed values on the
programmer’s part” [16]. The specification also states, that “[...] the value p being
boxed is an integer literal of type int between -128 and 127 inclusive (§3.10.1), [...]
then let a and b be the results of any two boxing conversions of p. It is always the case
that a == b.” [16], i.e. boxed integers between -128 and 127 are cached. Moreover, the
specification mentions, that “The implementation may cache these [boxed primitive

6



Applying Optimizations for
Dynamically-typed Languages to Java ManLang 2017, September 27–29, 2017, Prague, Czech Republic

• The isnonnull always returns false if the instruction
is specialized on primitive values. Vice versa for ifnull.

4.3 Removing autoboxing and autounboxing
As a last step we remove the automatic boxing of primitive val-
ues. To remove autoboxing and autounboxing we substitute every
function call to a boxing method (e.g. Integer.valueOf) by
an identity function that directly returns the primitive argument
value. Vice versa, if an unbox operation is performed on an object
that has been specialized to a primitive value, we simply ignore the
function call and continue with the primitive value. For example,
an invoke bytecode, which would call an unboxing method (e.g.
Integer::intValue) on a specialized primitive value, will be
ignored by TruffleBC. If a method (e.g. toString) is invoked on
a specialized primitive value, we lazily box this value and perform
a regular method call.

After data specialization, bytecode specialization, and the re-
moval of autoboxing/autounboxing, TruffleBC allows primitive
values to flow through a program and to be used everywhere a ref-
erence is expected. These optimizations work nicely together in the
ArrayList example of Listing 1; boxing/unboxing is completely
removed, reference bytecodes specialize on primitive int values,
and the Object[] of the ArrayList instance is specialized to
an int[].

5 EVALUATION
Themain goal of the evaluation is to show that a statically-typed lan-
guage like Java can benefit from optimizations originally conceived
for dynamically-typed languages. For this, we focus on assessing
whether specializing operations and optimizing data representation
can improve the performance for code that uses Java generics.

TruffleBC cannot yet run large-scale benchmark suites like SPEC-
jvm or DaCapo. Hence, we decided to use smaller benchmarks
and focus the evaluation on programs that heavily use generics in
performance-sensitive code where the boxing of primitives causes
significant overhead. For a fair assessment, we further want to
compare benchmarks that use generics with versions of the same
benchmarks that use primitive arrays directly. Benchmarks that
heavily use primitive arrays (e.g. the SciMark benchmarks) fit this
requirement best. These benchmarks allow us to provide an al-
ternative version where we replace the primitive arrays by Java’s
generic collections. With these two versions of each benchmark,
we can evaluate whether dynamic optimizations improve peak
performance of Java code that use generics.

Benchmarks. We use benchmarks from the SciMark benchmark
suite,4 benchmarks from the Are We Fast Yet suite [18] and others.
More specifically, our benchmarks consist of a micro benchmark
that uses a bubble-sort algorithm and larger benchmarks including a
Fast Fourier Transformation (FFT ), a dense LU matrix factorization
(LU ), array permutations (Permute, Fannkuch), an n-queens problem
solver (Queens), a Jacobi successive overrelaxation (SOR), and a
sparse matrix multiplication (SparseMatMult). We use two different

values], lazily or eagerly” [16], which is what we are doing, caching all boxed primitive
values.
4SciMark 2.0, Roldan Pozo and Bruce R Miller, access date: 2015, http://math.nist.gov/
scimark2/index.html

versions of these benchmarks: the ArraySuite consists of the default
implementations using primitive arrays; the ListSuite consists of
modified versions of the benchmarks using ArrayLists instead
of primitive arrays.

Experimental Setup. The benchmarks were executed on an Intel
Core i7-4770 quad-core 3.4GHz CPU running 64 Bit Ubuntu 16.04.1
LTS with 16 GB of memory. We base the TruffleBC implementations
on the Graal and Truffle version that is contained in the GraalVM
0.19 release. In this evaluation we compare three configurations
TruffleBC is the Truffle-based bytecode interpreter as described in

this paper. However, in this configuration we do not special-
ize data or bytecodes, nor do we remove automatic boxing
and unboxing. Also, in this configuration, TruffleBC does
not use Truffle’s DynamicObject for object allocations.
It allocates regular Java objects and arrays and uses the
sun.misc.Unsafe API to access members of an object.5

TruffleBC opt is the same Truffle-based bytecode interpreter as for
TruffleBC. However, in this configuration we use Truffle’s
DynamicObject for object allocations, we specialize data
(local variables, object members, and arrays), we specialize
bytecode instructions, and also remove automatic boxing
and unboxing.

HotSpot C2 is a regular Java HotSpot VM 1.8.0_92 using the server
compiler.

Our benchmark harness reports execution time (lower is better)
for each benchmark and its configuration. Whenever we report
peak performance we executed the benchmark 1000 times with the
same parameters to arrive at a stable peak performance. After these
warm-up iterations (an iteration is a full run of a single benchmark),
every benchmark has reached a steady state such that subsequent
iterations are identically and independently distributed. This was
verified informally using lag plots [17]. After warm-up, we executed
every benchmark for another 1000 iterations and calculated the
average using the arithmetic mean [11]. Where we report an error
interval we show the standard deviation. Where we summarize
across different benchmarks we report a geometric mean [11].

5.1 Micro benchmark
In the first part of our evaluation we use a micro benchmark, which
sorts integer values using the bubble-sort algorithm. We evaluate
two versions of this algorithm: first we sort an int[], and then an
ArrayList<Integer>. Figure 3 compares HotSpot C2, Truf-
fleBC, and TruffleBC opt. We normalized the six configurations
(HotSpot C2, TruffleBC, and TruffleBC opt running the array ver-
sion as well as the list version) to the HotSpot C2 performance
running the array version of the benchmark. The x-axis of the chart
shows the different configurations; the y-axis shows the normalized
average execution time (lower is better).

Replacing the int[] by ArrayList<Integer> makes the
HotSpot C2 performance 4.5x slower and TruffleBC 4.2x slower.
Using a generic class here introduces autoboxing/unboxing and
stores the primitive values in an Object[] rather than an int[],

5By investigating the IR of the Graal compiler we verified that object accesses using
sun.misc.Unsafe get compiled to the same machine code operations as a regular
Java object access.

7

http://math.nist.gov/scimark2/index.html
http://math.nist.gov/scimark2/index.html


ManLang 2017, September 27–29, 2017, Prague, Czech Republic Grimmer et al.

0

1

2

3

4
A

rr
ay

A
rr

ay
Li

st

R
un

tim
e

Fa
ct

or
,n

or
m

al
iz

ed
to

C
2

on
A

rr
ay

S
ui

te
(lo

w
er

is
be

tte
r) VM

Hotspot C2

TruffleBC

TruffleBC opt

Figure 3: Micro benchmark (sorting an int[] and an
ArrayList<Integer>) peak performance.

which causes a significant performance overhead. However, Truf-
fleBC opt can remove this overhead almost completely and executes
the version using an ArrayList<Integer> almost as fast as
the version using a primitive int[]. TruffleBC opt is 3.6x faster
than HotSpot C2 on the list version of the benchmark. The dy-
namic optimizations of TruffleBC remove boxing and unboxing,
specialize the reference bytecodes to the primitive int type, and
also ensure that the ArrayList is backed by an int[] rather
than anObject[]. These performance numbers provide empirical
evidence that the overhead, introduced by Java’s generics imple-
mentation, can be removed by dynamic optimizations.

5.2 Peak Performance
In this evaluation we investigate the performance difference be-
tween TruffleBC and TruffleBC opt on a larger set of benchmarks.
We also compare them to the peak performance of HotSpot C2. For
that, we use the ArraySuite and the ListSuite; within each suite, we
normalize numbers to HotSpot C2 performance. Figure 4 summa-
rizes the individual benchmarks using box-plots; the bottom and
the top of the box are the first and third quartiles, the band inside
the box is the median. The × denotes the geometric mean. Figure 5
shows the individual benchmarks; the y-axis of the charts show the
average execution time (lower is better) normalized to the HotSpot
C2 performance.

Let us first consider the ArraySuite; on these benchmarks the
dynamic optimizations do not trigger. TruffleBC opt is on average
8% slower than TruffleBC. Using DynamicObjects instead of reg-
ular Java objects or arrays introduces additional indirections when
accessing data. The Graal compiler applies partial escape analysis
with scalar replacement [26], which aims to remove most of these
indirections. If an object does not escape the compilation scope and

ArraySuite ListSuite

1 2 3 1 2 3

TruffleBC

TruffleBC opt

Hotspot C2

Runtime Factor, normalized to Java
(lower is better)

Figure 4: Peak performance benchmark evaluation sum-
mary (lower is better) of TruffleBC and T ruffleBC opt, rela-
tive to HotSpot C2.

ArraySuite ListSuite

Fa
nn

ku
ch

FF
T

LU
Pe

rm
ut

e
Q

ue
en

s
S

O
R

S
pa

rs
eM

at
M

ul
t

Fa
nn

ku
ch

FF
T

LU
Pe

rm
ut

e
Q

ue
en

s
S

O
R

S
pa

rs
eM

at
M

ul
t

0

1

2

3

4

R
un

tim
e

Fa
ct

or
,n

or
m

al
iz

ed
to

C
2

on
A

rr
ay

S
ui

te
(lo

w
er

is
be

tte
r)

VM
TruffleBC

TruffleBC opt

Figure 5: Peak performance benchmark evaluation (lower is
better) of TruffleBC and TruffleBC opt, relative to HotSpot
C2.

can hence be removed, there is no difference in performance (e.g.
Fannkuch, FFT, LU, and SOR).

However, if we consider the ListSuite where all dynamic op-
timizations trigger, TruffleBC opt is 54% faster compared to the
base version of TruffleBC. We measure the biggest speedup on
benchmarks where data access contributes significantly to the per-
formance of an application (e.g. Fannkuch, FFT, LU, Permute, SOR).
On the other hand, we measure no performance difference between
TruffleBC and TruffleBC opt on benchmarks where data access
plays a minor role (e.g. Queens or SparsematMult).

The performance numbers indicate that dynamic optimizations
come with a trade-off. In the evaluation’s worst-case scenario (the
ArraySuite), TruffleBC opt introduces an overhead of 8% compared
to TruffleBC. However, in the evaluation’s best-case scenario (the
ListSuite), TruffleBC opt is 54% faster than TruffleBC.

8



Applying Optimizations for
Dynamically-typed Languages to Java ManLang 2017, September 27–29, 2017, Prague, Czech Republic

In order to set our numbers in relation to an industry standard
JVM we also compare TruffleBC and TruffleBC opt to HotSpot
C2. Compared to HotSpot C2, TruffleBC is on average 57% (Truf-
fleBC) and 69% (TruffleBC opt) slower on the benchmarks of the
ArraySuite. A significant part of this overhead is caused by expen-
sive method calls in Truffle, which are not yet optimized by the
framework. Currently, Truffle method calls use Object arrays for
parameter passing, which requires allocation and boxing and is thus
more expensive than method calls in HotSpot C2. Work is under
way to resolve this issue, and we expect the peak performance gap
between TruffleBC and HotSpot C2 to be closed. This assumption is
supported by benchmarks where Truffle inlines all methods of the
benchmark into a single compilation unit (e.g. Fannkuch, Queens,
or SOR). For these benchmarks, the performance overhead is 36%
in the worst case.

If we consider the benchmarks of the ListSuite, TruffleBC (with-
out dynamic optimizations) is slower on every individual bench-
mark compared to HotSpot C2. However, TruffleBC opt is able to
outperform HotSpot C2 on Fannkuch (28%), LU (65%), and SOR
(12%). On average, TruffleBC opt is 1% faster than HotSpot C2 on
the ListSuite.

5.3 Warm-up Performance
Finally, we investigate the warm-up performance of TruffleBC and
TruffleBC opt and analyze the impact of dynamic optimizations
there. We are interested in the first 25 iterations because these
iterations contain the specialization of bytecode instructions, the
data specializations, and the elimination of autoboxing/unboxing.
After 25 iterations our benchmarks are compiled and have reached
their peak performance, which we informally verified using lag
plots. The charts in Figure 6 show the warm-up of TruffleBC, Truf-
fleBC opt, and HotSpot C2 for every individual benchmark. The
x-axis shows the iterations. The y-axis shows the performance of
the i-th iteration normalized to the peak performance (e.g., we
use TruffleBCiteration=3/TruffleBCpeak to compute the third value).
Data and bytecode specialization of TruffleBC opt introduce an
additional overhead in the first iterations compared to TruffleBC.
To quantify this additional overhead, we cumulate the relative over-
head to peak performance within the first 25 iterations for each
benchmark for all configurations (TruffleBC, TruffleBC opt, and
HotSpot C2):

Warmupbench =
1
25

25∑
i=1

TruffleBCiteration=i
TruffleBCpeak

TruffleBC TruffleBC opt HotSpot C2

Warmupgeom 16.2x 20.5x 1.8x
Table 1: Average overhead to peak performance.

Table 1 summarizes the average overhead to peak performance
on the first 25 iterations, which is caused by warm-up. Dynamic
optimizations of TruffleBC opt come with a trade-off; the Truf-
fleBC opt warm-up overhead in the first 25 iterations is 26% higher
than that of TruffleBC. The Truffle framework currently focuses on

peak performance; language implementations are built on a JVM,
and Truffle trees start execution in HotSpot’s interpreter, which in-
creases the warm-up time. Also, the Graal compiler (used to compile
Truffle trees to machine code) is designed to be a top-tier compiler
optimizing for peak performance, which makes it comparably slow.
Hence, HotSpot C2 (green line in Figure 6) has a significantly better
start-up performance than TruffleBC. All benchmarks reach their
peak performance within the first 5 iterations on HotSpot C2. For a
more detailed discussion about Truffle warm-up performance, we
would like to refer the reader to [19].

6 RELATEDWORK
Applying optimization techniques for dynamically-typed languages
to statically-typed languages has a long-standing tradition [1]. The
just-in-time compilation technology for SELF [27] was the founda-
tion for what eventually became the HotSpot JVM [21]. In the same
vein, the work presented here explores how techniques that are
currently used in JavaScript and Python VMs can be used in Java.
Specifically, we rely on the work on SELF’s maps [4], the Truffle
object storage model [29], storage strategies [2], and mementos [6].

The Truffle object storage model provides the foundation for rep-
resenting objects in TruffleBC in such a way that type-specialization
of fields can be applied at run time. Variations of this technique
and SELF’s maps are widely used in JavaScript engines [5] and, for
instance, in PyPy [3]. To the best of our knowledge, however, they
have not been applied to statically-typed languages such as Java
before. With Java’s particular design interaction of primitives and
generics, Java is a language where type parameters are checked at
compile time, but are absent at run time, which leaves room for
dynamic optimizations.

In addition to optimizing objects, collections are of great interest,
because collections are the area where Java’s generics are widely
used. Storage strategies for collections provide the foundation for
optimizations and have been explored for Python in PyPy [2]. They
also have been applied to JavaScript, for instance in V8, where
they are used in combination with type-feedback to the allocation
site [6] in order to achieve optimal performance.

Approaches such as Miniboxing [28] use compiler optimizations
and additional type information to generate specialized representa-
tions that encode generic data structures without boxing. However,
since this is a static approach it is less flexible than our dynamic
approach proposed here. Furthermore, Scala uses a @miniboxed
annotation since the semantics are not transparent.

Work such as [33] and Chameleon [23] is more specifically tar-
geted towards collections and provides either online or offline
means to optimize them more for operations on collections in gen-
eral, and thus goes beyond the type specializations demonstrated
here. However, such more advanced optimizations and also the
notion of just-in-time data structures [8] could be combined with
the optimizations presented here.

Another aspect to be considered in our optimizations is, for
instance, thread safety [7]. However, our work focused first on
the performance potential for single threaded code, and we will
investigate thread safety in future work.

9



ManLang 2017, September 27–29, 2017, Prague, Czech Republic Grimmer et al.

SparseMatMult

Queens SOR

LU Permute

Fannkuch FFT

Array ArrayList
0 5 10 15 20 25

0 5 10 15 20 25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

Iteration

Ite
ra

tio
n

Ti
m

e
no

rm
al

iz
ed

to
Pe

ak
Pe

rfo
rm

an
ce

pe
rV

M

Hotspot C2
TruffleBC
TruffleBC opt

Figure 6:Warm-upplots of ListSuite benchmarks on thefirst
25 iterations.

7 CONCLUSION
In this paper we presented TruffleBC, a self-optimizing Truffle inter-
preter, which applies dynamic optimizations to Java bytecode. We
applied dynamic compilation techniques designed for dynamically-
typed languages and showed that they can be successfully used
for Java, e.g., to implement Java’s generics more efficiently. These
optimizations include the specialization of reference bytecode in-
structions to primitive types, data specialization, and the removal
of automatic boxing and unboxing.

We have seen that dynamic optimizations make the interpreter
more complicated. Data structures as well as the implementation
of bytecode instructions must be more flexible such that they can
be adapted at run time, which increases the pressure on the dy-
namic compiler. Whenever the dynamic compiler can optimize and
remove this additional complexity, we do not see a performance dif-
ference between a TruffleBC version without dynamic optimization
and a TruffleBC version with dynamic optimizations. Overall, we
measured a performance overhead of 8% of TruffleBC with dynamic
optimizations on benchmarks where these optimizations did not
trigger. However, on benchmarks where the dynamic optimizations
trigger and data and bytecode can be specialized for primitive types,
we measure an average speedup of 54%. On these benchmarks, Truf-
fleBC also outperforms HotSpot C2 by 1% on average and is up to
65% faster in certain cases.

From our work we can conclude that dynamic language im-
plementation frameworks like Truffle can be used to efficiently
implement statically-typed languages like Java. Based on this im-
plementation, we successfully demonstrated that Java programs
using flexible typing (e.g., generic data types or the compatibility
between primitive data types and Object) can be effectively opti-
mized using compiler techniques that were originally designed for
dynamically-typed languages.

ACKNOWLEDGMENTS
We thank all members of the Virtual Machine Research Group at
Oracle Labs and the Institute of System Software at the Johannes
Kepler University Linz for their valuable feedback on this work
and on this paper. Oracle, Java, and HotSpot are trademarks of
Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

REFERENCES
[1] John Aycock. 2003. A Brief History of Just-In-Time. ACM Comput. Surv. 35, 2

(June 2003), 97–113. https://doi.org/10.1145/857076.857077
[2] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. 2013. Storage Strategies

for Collections in Dynamically Typed Languages. In Proc. OOPSLA. 167–182.
https://doi.org/10.1145/2509136.2509531

[3] Carl Friedrich Bolz and Laurence Tratt. 2013. The Impact of Meta-Tracing
on VM Design and Implementation. Science of Computer Programming (2013).
https://doi.org/10.1016/j.scico.2013.02.001

[4] Craig Chambers, David Ungar, and Elgin Lee. 1989. An Efficient Implementation
of SELF a Dynamically-Typed Object-Oriented Language Based on Prototypes. In
Proceedings on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA). ACM, 49–70. https://doi.org/10.1145/74878.74884

[5] Maxime Chevalier-Boisvert and Marc Feeley. 2016. Interprocedural Type Spe-
cialization of JavaScript Programs Without Type Analysis. In 30th European
Conference on Object-Oriented Programming (ECOOP 2016) (Leibniz International
Proceedings in Informatics (LIPIcs)), Vol. 56. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 7:1–7:24. https://doi.org/10.4230/LIPIcs.
ECOOP.2016.7

10

https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/2509136.2509531
https://doi.org/10.1016/j.scico.2013.02.001
https://doi.org/10.1145/74878.74884
https://doi.org/10.4230/LIPIcs.ECOOP.2016.7
https://doi.org/10.4230/LIPIcs.ECOOP.2016.7


Applying Optimizations for
Dynamically-typed Languages to Java ManLang 2017, September 27–29, 2017, Prague, Czech Republic

[6] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. 2015. Memento
Mori: Dynamic Allocation-site-based Optimizations. In Proceedings of the 2015
International Symposium on Memory Management (ISMM ’15). ACM, 105–117.
https://doi.org/10.1145/2754169.2754181

[7] Benoit Daloze, Stefan Marr, Daniele Bonetta, and Hanspeter Mössenböck. 2016.
Efficient and Thread-Safe Objects for Dynamically-Typed Languages. In Proceed-
ings of the 2016 ACM International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’16). ACM, 18.

[8] Mattias De Wael, Stefan Marr, Joeri De Koster, Jennifer B. Sartor, and Wolf-
gang De Meuter. 2015. Just-in-Time Data Structures. In Proceedings of the 2015
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward! ’15). ACM, 61–75. https://doi.org/10.1145/
2814228.2814231

[9] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Specula-
tion Without Regret: Reducing Deoptimization Meta-data in the Graal Compiler.
In Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ
’14). ACM, 187–193. https://doi.org/10.1145/2647508.2647521

[10] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug
Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for
Speculative Optimizations in a Dynamic Compiler. In Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages (VMIL ’13). ACM, 1–10.
https://doi.org/10.1145/2542142.2542143

[11] Philip J. Fleming and John J. Wallace. 1986. How Not to Lie with Statistics: The
Correct Way to Summarize Benchmark Results. Commun. ACM 29, 3 (March
1986), 218–221. https://doi.org/10.1145/5666.5673

[12] Matthias Grimmer, Manuel Rigger, Lukas Stadler, Roland Schatz, and Hanspeter
Mössenböck. 2013. An Efficient Native Function Interface for Java. In Proceedings
of the 2013 International Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’13). ACM, 35–44.
https://doi.org/10.1145/2500828.2500832

[13] Matthias Grimmer, Chris Seaton, Roland Schatz, Würthinger, and Hanspeter
Mössenböck. 2015. High-Performance Cross-Language Interoperability in a
Multi-Language Runtime. In Proceedings of the 11th Symposium on Dynamic
Languages (DLS ’15). ACM.

[14] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter Mössen-
böck. 2015. Dynamically Composing Languages in a Modular Way: Support-
ing C Extensions for Dynamic Languages. In Proceedings of the 14th Inter-
national Conference on Modularity (MODULARITY 2015). ACM, 1–13. https:
//doi.org/10.1145/2724525.2728790

[15] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging Optimized
Code with Dynamic Deoptimization. In Proceedings of the ACM SIGPLAN 1992
Conference on Programming Language Design and Implementation (PLDI ’92).
ACM, 32–43. https://doi.org/10.1145/143095.143114

[16] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. 2000. The Java language
specification. (2000), 768 pages.

[17] Tomas Kalibera and Richard Jones. 2013. Rigorous Benchmarking in Reasonable
Time. In Proceedings of the 2013 ACM SIGPLAN International Symposium on
Memory Management (ISMM).

[18] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-Language
Compiler Benchmarking—Are We Fast Yet?. In Proceedings of the 12th Sympo-
sium on Dynamic Languages (DLS’16). ACM, 12. https://doi.org/10.1145/2989225.
2989232

[19] Stefan Marr and Stephane Ducasse. [n. d.]. Tracing vs. Partial Evaluation: Com-
paring Meta-Compilation Approaches for Self-Optimizing Interpreters. In Pro-
ceedings of the 2015 ACM International Conference on Object Oriented Programming
Systems Languages; Applications (OOPSLA ’15). ACM.

[20] Jerome Miecznikowski and Laurie Hendren. 2002. Decompiling Java bytecode:
Problems, traps and pitfalls. In International Conference on Compiler Construction.

Springer, 111–127.
[21] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java Hotspot(TM)

Server Compiler. In JVM’01: Proceedings of the 2001 Symposium on JavaTM Virtual
Machine Research and Technology Symposium. USENIX Association, 12.

[22] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Würthinger,
and Hanspeter Mössenböck. 2016. Bringing Low-Level Languages to the JVM:
Efficient Execution of LLVM IR on Truffle. In Proceedings of Workshop on Virtual
Machines and Intermediate Languages (VMIL ’16). 10. https://doi.org/10.1145/
2998415.2998416

[23] Ohad Shacham, Martin Vechev, and Eran Yahav. 2009. Chameleon: Adaptive
Selection of Collections. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’09), Vol. 44. 408–418.
https://doi.org/10.1145/1543135.1542522

[24] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, and Thomas Würthinger.
2012. Compilation Queuing and Graph Caching for Dynamic Compilers. In
Proceedings of the Sixth ACM Workshop on Virtual Machines and Intermediate
Languages (VMIL ’12). ACM, 49–58. https://doi.org/10.1145/2414740.2414750

[25] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and
Doug Simon. 2013. An Experimental Study of the Influence of Dynamic Compiler
Optimizations on Scala Performance. In Proceedings of the 4th Workshop on Scala
(SCALA ’13). ACM, Article 9, 8 pages. https://doi.org/10.1145/2489837.2489846

[26] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Par-
tial Escape Analysis and Scalar Replacement for Java. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO
’14). ACM, Article 165, 10 pages. https://doi.org/10.1145/2544137.2544157

[27] David Ungar and Randall B. Smith. 1987. Self: The Power of Simplicity. In
Conference Proceedings on Object-oriented Programming Systems, Languages and
Applications (OOPSLA ’87). ACM, 227–242. https://doi.org/10.1145/38765.38828

[28] Vlad Ureche, Cristian Talau, and Martin Odersky. 2013. Miniboxing: Improving
the Speed to Code Size Tradeoff in Parametric Polymorphism Translations. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages &#38; Applications (OOPSLA ’13). ACM, 73–92.
https://doi.org/10.1145/2509136.2509537

[29] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer,
and Hanspeter Mössenböck. 2014. An Object Storage Model for the Truffle
Language Implementation Framework. In Proceedings of the 2014 International
Conference on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ ’14). ACM, 133–144. https://doi.org/10.
1145/2647508.2647517

[30] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.
Practical Partial Evaluation for High-performance Dynamic Language Runtimes.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017). ACM, 662–676. https://doi.org/10.1145/
3062341.3062381

[31] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, 187–204. https://doi.org/10.1145/2509578.2509581

[32] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. 2012. Self-optimizing AST Interpreters. In Proceedings
of the 8th Symposium on Dynamic Languages (DLS ’12). ACM, 73–82. https:
//doi.org/10.1145/2384577.2384587

[33] Guoqing Xu. 2013. CoCo: Sound and Adaptive Replacement of Java Collections.
In ECOOP 2013 – Object-Oriented Programming: 27th European Conference, Mont-
pellier, France, July 1-5, 2013. Proceedings, Giuseppe Castagna (Ed.). Springer, 1–26.
https://doi.org/10.1007/978-3-642-39038-8_1

11

https://doi.org/10.1145/2754169.2754181
https://doi.org/10.1145/2814228.2814231
https://doi.org/10.1145/2814228.2814231
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/5666.5673
https://doi.org/10.1145/2500828.2500832
https://doi.org/10.1145/2724525.2728790
https://doi.org/10.1145/2724525.2728790
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/1543135.1542522
https://doi.org/10.1145/2414740.2414750
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/38765.38828
https://doi.org/10.1145/2509136.2509537
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1007/978-3-642-39038-8_1

	Abstract
	1 Introduction
	2 Background and Problem Statement
	2.1 The Java Virtual Machine and Java Bytecode
	2.2 Problem Statement
	2.3 Truffle and Graal

	3 Java Bytecode Execution on Top of Truffle
	3.1 Local Variables, Operand Stack, Object Allocations
	3.2 Interpretation of Java Bytecode
	3.3 Compilation
	3.4 Completeness

	4 Self-Optimizing Java Bytecode Execution
	4.1 Data specialization
	4.2 Specialization of reference bytecodes
	4.3 Removing autoboxing and autounboxing

	5 Evaluation
	5.1 Micro benchmark
	5.2 Peak Performance
	5.3 Warm-up Performance

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

