
Tail Call Optimization in the Java HotSpot™ VM

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Masterstudium

MASTERSTUDIUM INFORMATIK

Eingereicht von:
Arnold Schwaighofer, 9920231

Angefertigt am:
Institut für Systemsoftware

Betreuung:
o.Univ.-Prof. Dipl.-Ing. Dr. Dr. h.c. Hanspeter Mössenböck

Mitbetreuung:
Dipl.-Ing. Dr. Christian Wimmer

Linz, März 2009

Abstract

Many programming language implementations compile to Java bytecode, which is exe-
cuted by a virtual machine (e.g the Java HotSpot

TM
VM). Among these languages are

functional languages, which require an optimization that guarantees that certain kinds
of method calls do not cause the execution stack to grow unlimitedly. This optimization
is called tail call optimization and is currently not supported by the HotSpot

TM
VM.

Implementations of functional languages have to resort to alternative techniques to guar-
antee that the stack space does not increase unboundedly. These techniques complicate
the implementation and also incur a performance penalty.

This thesis presents techniques for supporting tail call optimization in the Java HotSpot
TM

Virtual Machine. Our optimization is implemented in the interpreter, the client com-
piler and the server compiler. Tail call optimization normally removes stack frames to
guarantee that the stack space stays bounded. However, some stack frames are required
for the Java access security mechanism to work and hence cannot be removed. The
virtual machine features a mechanism called deoptimization that allows one to rewrite
stack frames. We describe an approach that uses the deoptimization infrastructure to
compress stack frames when tail call optimization was disabled because of the security
mechanism. This approach allows a series of tail calls to execute in bounded stack space
in the presence of a stack-based security mechanism.

i

Kurzfassung

Viele Programmiersprachen Implementierungen kompilieren zu Java Bytecodes, welche
von der Java HotSpot

TM
Virtual Machine ausgeführt werden. Unter diesen sind auch

funktionale Programmiersprachen. Einige dieser Sprachen erfordern eine Optimierung
die sicher stellt, dass gewisse Methodenaufrufe den Methodenkeller nicht uneingeschränkt
erweitern. Diese Optimierung wird Tail Call Optimierung genannt und wird derzeit von
der VM nicht unterstützt. Implementierungen müssen deshalb alternative Techniken ver-
wenden, welche garantieren, dass der Methodenkeller eingeschränkt bleibt. Diese Tech-
niken komplizieren die Implementierung und verursachen einen Geschwindigkeitsverlust.

Diese Arbeit zeigt die Veränderungen die notwendig sind, um Tail Call Optimierung in
der Java HotSpot

TM
Virtual Machine zu unterstützen. Die Optimierung wurde im Inter-

preter, Client und Server Compiler implementiert. Tail Call Optimierung entfernt norma-
lerweise Methodenaktivierungssätze. Manche Aktivierungssätze werden für ein korrektes
Arbeiten des Java Sicherheitsmechanismus benötigt und können nicht entfernt werden.
Die virtuelle Maschine stellt einen Mechanismus - Deoptimierung - zur Verfügung, der
es erlaubt Aktivierungssätze zu verändern. In dieser Arbeit wird beschrieben, wie Deop-
timierung genutzt werden kann um Methodenaktivierungssätze zu komprimieren, falls
Tail Call Optimierung aufgrund des Sicherheitsmechanismus nicht angewendet wurde.
Diese Vorgehensweise garantiert, dass eine Serie von Methodenaufrufen in Tail Call Po-
sition trotz des Java Sicherheitsmechanismus in beschränktem Methodenkellerspeicher
ausgeführt werden kann.

ii

Contents

1 Introduction 1

1.1 Target for Programming Language Implementations 1
1.2 Context . 3
1.3 Tail Call Optimization . 4
1.4 Problem Statement . 4
1.5 Structure of the Thesis . 5

2 Tail Call Optimization 6

2.1 Example . 6
2.2 Normal Method Call Sequence . 7
2.3 Tail Call Conditions . 10
2.4 Tail Call Optimized Method Sequence . 12
2.5 Motivation . 12
2.6 Approaches in Uncooperative Environments 15
2.7 Definition . 17

3 Java HotSpot
TM

VM 20

3.1 Java Virtual Machine . 20
3.2 Abstract Execution Model . 21
3.3 Java HotSpot

TM
VM . 23

3.3.1 Runtime . 24
3.3.2 Interpreter . 28
3.3.3 Client Compiler . 29
3.3.4 Server Compiler . 33

4 Implementation 36

4.1 Target Hardware Platform . 36
4.2 Bytecode Instruction Set Changes . 37
4.3 Bytecode Verifier . 38
4.4 Method Invocation Overview . 40
4.5 Method Abstraction . 44
4.6 Access Security Mechanism . 46
4.7 Interpreter . 48

iii

Contents iv

4.7.1 Dispatch of ’wide’ Templates . 49
4.7.2 Interpreter Execution Environment 49
4.7.3 Interpreter Method Execution . 50

4.8 Compiler . 58
4.8.1 Sibling and Non-Sibling Tail Calls 58
4.8.2 Call Sites in Compiled Code . 60
4.8.3 Resolving a Call . 67
4.8.4 Dispatch Stubs . 68
4.8.5 Frame Layout and Calling Convention 68
4.8.6 Method Entry Points . 69
4.8.7 Compiled to Interpreted Transitions 72
4.8.8 Client Compiler . 76
4.8.9 Server Compiler . 80
4.8.10 Stack Compression . 83

4.9 Jumping Tail Calls . 87
4.10 Optimizing Sibling Calls . 87

5 Evaluation 89

5.1 Program . 89
5.2 Static Sibling Calls . 92
5.3 Non-Sibling Calls . 96
5.4 Polymorphic Calls . 98
5.5 Stack Compression . 102

6 Related Work 103

7 Conclusions 106

A Bibliography 112

1 Introduction

Today there are many programming language implementations that rely on the Java
Virtual Machine (JVM) as their target platform. The JVM provides them with many
features that are required for a modern implementation. One feature, which is currently
missing from the JVM platform, is tail call optimization. Tail call optimization is applied
to certain kind of function calls allowing a series of such calls to execute in bounded
stack space. This optimization is required for implementing many functional languages.
Its absence complicates implementing function calls and the workarounds used cause a
performance penalty, when compared to normal function calls.

This thesis describes the implementation of tail call optimization in the Java HotSpot
TM

Virtual Machine. This chapter introduces the JVM as a target platform for language
implementations, describes the context of this work and lists the challenges that arise
from implementing tail call optimization on a JVM.

1.1 Target for Programming Language Implementations

“The Java virtual machine knows nothing of the Java programming language,
only of a particular binary format, the class file format. A class file contains
Java virtual machine instructions (or bytecodes) and a symbol table, as well
as other ancillary information.

For the sake of security, the Java virtual machine imposes strong format and
structural constraints on the code in a class file. However, any language with
functionality that can be expressed in terms of a valid class file can be hosted
by the Java virtual machine. Attracted by a generally available, machine-
independent platform, implementors of other languages are turning to the
Java virtual machine as a delivery vehicle for their languages.“

The Java Virtual Machine Specification, [38]

A modern programming language implementation requires many aspects to be taken into
account. When implementing a new language the designer not only has to take care that

1

1 Introduction 2

the language itself is sound and correct but he also needs to ensure that the language
implementation runs on a variety of operating systems and hardware platforms. He
needs to deal with memory management and concurrent execution of programs. Getting
this features correct takes a considerable amount of engineering effort.

This is where a virtual machine can help. The idea of a virtual machine is to introduce
an abstraction level between generated code and target platform. This abstraction level
hides the target platform by supplying a standardized platform independent interface to
perform computations. Very often it also provides abstractions for memory management
and concurrent execution. The user of the virtual machine programs against the defined
interface. The VM provides an environment that ensures that programs execute correctly
on the target platform.

A Java Virtual Machine is such an environment. It has a defined interface in the form
of an instruction set called Java bytecode. Instead of translating the language to object
code of a target platform, a compiler targeting the JVM translates programs to Java
bytecode. There are implementations of the JVM on a variety of hardware and operating
system platforms. When the program is to be executed the JVM loads the bytecode and
performs actions that correspond to the semantic of the bytecode.

As the name indicates the JVM was initially meant to be the target of the Java pro-
gramming language. The Java language is a general purpose object oriented concurrent
language [38]. Hence Java bytecode provides instructions for general purpose comput-
ing, e.g. mathematical and logical operations, for concurrent execution, e.g. locking and
unlocking of objects, and for allocating and manipulating objects. As these features are
also required for other languages, implementors have soon realized that the Java VM
can also be used as a target for their compilers, thereby getting automatic memory man-
agement, platform independence and concurrent execution support. In addition they
can benefit from the wealth of existing libraries. Examples of language implementations
compiling to the JVM are

• Groovy [32]: a dynamically typed object oriented language.

• JRuby [42]: an implementation of the programming language Ruby.

• Jython [30]: an implementation of the programming language Python.

• Bigloo [52], Kawa [7], SISC [40]: Scheme implementations.

• Clojure [26], Armed Bear Common Lisp [29]: Common Lisp implementations.

• Scala [43]: a programming language that unifies functional and object oriented
programming.

• OcamlJava [13]: an implementation of the programming language OCaml, which
is a variant of ML.

1 Introduction 3

1.2 Context

A JVM conforms to an abstract specification, the JVM specification [38]. The Spec-
ification defines the bytecode, the object model and the execution model. The JVM
executes by loading class files, which contain Java bytecode. Before execution the code
is verified to ensure that the VM is not compromised. Java bytecode mimics a stack
machine. Operands are pushed onto an operand stack. An operator, e.g. an add in-
struction or a method call, consumes them and leaves its result on the operand stack.
Bytecodes are assembled in methods. Each active method has a stack frame associated
with it. It contains its execution environment consisting of local variables, the method’s
parameters and the operand stack. A recursive call of a method causes creation of a
new frame on top of the calling functions frame, thereby growing the execution stack.
Objects are allocated on a heap and are automatically reclaimed by a garbage collector
when they are no longer referenced. To support concurrent execution a thread model
with shared memory is used. Each thread has its own execution stack and performs
computation concurrently with other threads. Threads share the heap. Therefore the
programmer has to guard concurrent access to memory using special instructions that
guarantee mutual exclusion.

The JVM features a security model where code loaded from certain locations can be
restricted in what it can do. Potentially dangerous operations, e.g. reading or writing
to a file, require certain permissions. On execution of such an operation the JVM checks
if the operation is allowed by looking at the execution stack. Each frame maps to a set
of permissions via the method it belongs to. If the JVM detects a frame of a method
that does not have the permission to perform the operation, the operation fails and a
security exception is thrown.

The Java HotSpot
TM

VM is an implementation of the specification. It is a program
that consists of an interpreter and a machine code compiler. At first bytecode is inter-
preted. When the execution count of a method crosses a certain threshold, the method
is compiled as a whole by one of two compilers: the client compiler and the server com-
piler. The compilers produce optimized code for the target platform of the JVM. This
code runs at a much higher speed than an execution of the same method in the inter-
preter. The execution stack maintains two types of frames, compiled frames containing
the execution environment for compiled methods and interpreter frames containing the
execution environment for interpreted methods.

1 Introduction 4

1.3 Tail Call Optimization

In many functional languages, iterative computations are expressed by recursive method
calls. To describe the iterative process, the last action a method performs is calling
another method before returning the result of the called method. This is called the tail
call. Without tail call optimization each recursive method call creates a new stack frame
thereby growing the execution stack. Eventually the stack runs out of space and the
program has to stop. Tail call optimization guarantees that a series of tail calls executes
in bounded space not causing the program to stop. It is implemented by replacing the
caller method’s frame by the called method’s frame. To support iteration by recursion
functional languages require tail call optimization.

1.4 Problem Statement

To be able to support functional languages better, the goal of this thesis is to add a tail
call instruction to the instruction set and implement tail call optimization in the Java
HotSpot

TM
Virtual Machine. The following challenges are solved in the IA-32 version of

the VM.

• We added support for tail call versions of the different method invocation bytecode
instructions. The programmer indicates a tail call to the VM by prefixing the
invocation bytecode with a special bytecode. We modified the VM, so that it
recognizes these instructions as tail call versions of a method call.

• The bytecode verifier recognizes tail calls and checks the conditions under which
they are legal. Programs that contain tail calls at places where they violate correct
program execution are rejected.

• We modified the interpreter to perform tail call optimization on tail call method
invocations.

• We modified the client and server compiler to support tail call optimization. To
deal with the different types of tail calls we introduce special method prologs.

• The Java HotSpot
TM

VM features mixed execution stacks. An interpreted method’s
frame might be followed by a compiled method’s frame and vice versa. The tail
call optimization implementation maintains correct behavior in this environment.

• Tail call optimization sometimes requires that a stack frame grows to accommodate
additional method parameters. In the Java HotSpot

TM
VM compiled frames have

a fixed size and cannot grow. The implementation solves this by detecting when a
frame needs to grow and using an interpreter frame in this case.

1 Introduction 5

• The security model requires information stored in the stack frame of called meth-
ods. If this information differs from calling to called method in a tail call, replacing
the calling frame by the called frame might destroy information and change the
security behavior. In this case the implementation disables the tail call and leaves
the stack frame on the stack. This might result in a stack overflow exception.
To maintain the tail call optimization guarantee, the implementation compresses
the execution stack by removing stack frames that contain duplicate information
before the stack overflow occurs.

1.5 Structure of the Thesis

Chapter 2 describes the motivation and theory behind tail call optimization and lists
alternative methods, which are used by language implementations on the JVM to circum-
vent the absence of tail call optimization. At the end a definition of tail call optimization
is given, which is used for the rest of the thesis.

Chapter 3 describes the Java HotSpot
TM

VM as the target of the implementation. The
optimization is implemented in the interpreter, client compiler and server compiler for
the IA-32 platform. The runtime of the VM is adapted. This chapter describes these
components.

Chapter 4 describes the implementation of tail call optimization in the VM. The changes
to the bytecode instruction set and the bytecode verifier are described. An overview of
the different method invocations and the method abstraction is given. Tail call opti-
mization interacts with the Java access control security mechanism. We describe how
the implementation maintains the security semantics. Next the changes to the inter-
preter are explained, followed by the adaptations in the compiler and the runtime. At
the end of the chapter two implemented improvements are described, which enhance the
performance of the implementation.

Chapter 5 evaluates the implementation using a program that mainly consists of tail
calls. The performance of tail call optimized code is compared to normal method calls
and a trampolined version of the program. This illustrates the worst slowdown or the
best speedup that is to be expected in real programs when tail call optimization is
enabled.

Chapter 6 lists related projects and compares them to this work. Finally chapter 7
summarizes the work and suggests some improvements to the current implementation.

2 Tail Call Optimization

Execution of methods causes the creation of new stack frames. The execution stack
grows. Tail call optimization prevents the stack from growing by replacing the caller’s
frame by the called method’s frame. This can only be done safely under certain condi-
tions. This chapter introduces the theory behind tail call optimization. It starts with
an example, which is used throughout this thesis. Using an abstract description of
method execution a normal and a tail call optimized calling sequence is illustrated and
the conditions under which the optimization is valid are described.

Tail call optimization can be used to improve performance but functional languages
require it to express iterative computation. We show some typical control constructs in
functional languages as motivation for the need of tail call optimization. Then we show
approaches used by language implementations on the Java VM that require it. In the
context of the Java VM the caller’s stack frame cannot always be replaced due to the
access security mechanism. At the end of this chapter we give a less strict definition of
tail call optimization used for rest of this thesis.

2.1 Example

For the purpose of illustrating what happens during tail call optimization the following
Java example of calculating the length of a list is used throughout this thesis. The list
is described as an abstract datatype List. A List can either be an empty list Empty or
an element ListElem, which is prepended to a list. The ListElem object has two fields.
The field element, which holds the element of the list and the field rest, which holds
the remaining part of the list.

To construct a list, ListElem constructors are nested appropriately, as shown in the
main method of List. The length method calls the accLen method passing zero as
argument. The accLen method takes one parameter n, the length computed so far. If
accLen is called on a ListElem object, it adds one to the length computed so far and
passes this value to the rest’s method accLen, which recursively computes the length of
the rest of the list. The Empty’s method accLen returns the parameter passed to it. It

6

2 Tail Call Optimization 7

builds the base case of the recursion, which causes the return of the result to the length
function.

public abstract class List {

public int length() {

return accLen(0);

}

abstract protected int accLen(int n);

static void main(String args[]) {

List l = new ListElem(1, new ListElem(2, new Empty()));

int len = l.length(); // == 2

}

}

public class ListElem extends List {

private Object element;

private List rest;

public ListElem(Object element, List rest) {

this.element = element;

this.rest = rest;

}

protected int accLen(int n) {

int newLength = n + 1;

return rest.accLen(newLength);

}

}

public class Empty extends List {

public Empty() {}

protected int accLen(int n) {

return n;

}

}

Listing 2.1: List code example

2.2 Normal Method Call Sequence

An active method uses a data structure called stack frame to store information needed
for its execution. In general it contains at least the following four items.

• Local data, an area where the function stores its local variables or temporary values
such as spilled registers.

• Dynamic link, a reference to the frame of the method that called the current
method.

2 Tail Call Optimization 8

• Return address, the instruction in the calling function where execution resumes
when the current method finishes.

• The parameters of the current method.

While there are other ways to link stack frames of calling methods together, most lan-
guage implementations use a stack-like data structure, as this is an efficient structure
due to fast allocation, memory locality and the fact that today’s hardware platforms are
optimized for calling sequences that use stack-like operations.

Each recursive call creates a new frame on top of the calling methods frame. Returning
from a method to its calling method removes this frame. This results in a stack-like
data structure. Hence the name stack frame. The currently executing method’s frame is
the top frame on this stack. When the function finishes its stack frame is conceptually
popped off the stack.

To indicate the extend of a frame there are two pointers: the stack pointer, which marks
the top of the stack and the frame pointer, which usually points to a fixed position near
the bottom of the stack frame. The frame pointer can be used to access parameters and
local variables, which are positioned at a fixed offset to it. It is only needed if the size
of a stack frame changes during execution of a method. Otherwise it can be computed
by subtracting a constant number, the stack frame size, off the stack pointer. Figure 2.1
shows a typical stack layout at a state where a method f called g.

Parameters of f
Return address in ...

Dynamic link

Parameters of g
Return address in f

Local data of g
Dynamic link

Local data of f

g's frame

f's frame

Bottom of stack
...

Top of stack

Stack pointer

Frame pointer

Figure 2.1: Stack layout

There are three distinct phases involved in a function call sequence. The prolog is
executed at the entry of a method and is responsible for setting up the method’s stack
frame and storing state of the calling method that is destroyed by the called method
(e.g. registers). The call site places the parameters, stores the return address on the

2 Tail Call Optimization 9

top of the stack and jumps to the called method’s entry. When the method finishes it
executes the epilog, which invokes instructions that restore the calling method’s state
and tear down the stack frame.

Parameters of methods are usually passed in machine registers and on the stack depend-
ing on the calling convention used and machine registers available. For the rest of this
chapter we assume for simplicity that all arguments are passed on the stack. The area
where parameters are stored when calling a method is referred to as outgoing argument
area. This area is either implicitly created by pushing the methods arguments onto the
top of the stack or it is explicitly created as part of the stack frame. A compiler knows
all called functions and can create an area at the end of a stack frame, which has enough
space for the parameters of the called functions. Figure 2.2 (a) illustrates this. When a
method is called its parameters are moved to the outgoing argument area.

outgoing

incoming: 1outgoing

caller method
...

FP
current
method's
stack frame

SP

caller method
...

current
method

FP
called
method's
stack frame

SP

current() {
 called(1)
 anothercalled(1,1)
}

called(int p) {
 another(1,1)
}

(a) (b)

Figure 2.2: Incoming and outgoing argument area

The section of the outgoing argument area of the caller that contains the arguments of
the currently called function is referred to as the incoming argument area of the called
function. See Figure 2.2 (b) for an example. The Java HotSpot

TM
VM creates the

outgoing argument area as part of the stack frame setup. Therefore we assume this
method for the rest of this thesis.

Figure 2.3 shows the state of the stack during the three phases when calling accLen

from length of Listing 2.1. The leftmost figure shows the state before length performs
the call. SP/FP denote the stack/frame pointer. There is the return address and the
stored frame pointer of length’s calling function on the stack. The area between stack
and frame pointer normally contains space for local variables and outgoing parameters.
Because length has no local variables only one stack slot is reserved for the argument
to accLen.

2 Tail Call Optimization 10

length's caller
...

Ret. address
Dynamic linkFP

length's
frame

SP

length's caller
...

FP
length's
frame

SP Ret. address
0

length's caller
...

FP

length's
frame

SP

Ret. address
0

Dynamic link

acclength's
frame

newLength

outgoing parm

outgoing parm

Figure 2.3: Stack states during a call sequence

The call site stores the parameter of the call to accLen on the stack. Next it places the
address of the next instruction in length after the call to accLen on the top of stack.
Then it continues execution of the program at the method entry of accLen. The stack’s
state is shown in the middle figure.

The prolog of accLen stores the frame pointer of length and increases the stack pointer
to make room for the local variable newLength and outgoing parameters. The figure on
the right depicts the stack at this stage. After the recursive call of accLen returns, the
epilog is executed. It tears down the accLen’s stack frame by setting the stack pointer
equal to the frame pointer. Then it pops the frame pointer of length off the stack.
At last it retrieves the return address in length from the top of stack and continues
execution at the pointed to instruction. The state again resembles the figure on the left.
We can observe that the stack grows with each recursive method invocation.

2.3 Tail Call Conditions

The example in Listing 2.1 has one problem. If the list constructed in the main method is
long, e.g. thousands of elements, thousands of recursive calls are performed. This causes
the execution stack to grow until it eventually runs out of space resulting in a memory
error or as it is the case in Java in an exception. This where tail call optimization can
help. A tail call optimized method invocation safes stack space by replacing the calling
frame by the called frame instead of creating a new stack frame. But this optimization
can only be done if the information in the calling frame is no longer needed. The
information in the calling frame is needed, if the callee (the called method) accesses
memory stored in the local data section of the calling frame or if the caller performs any
instructions after the called method returned besides returning itself.

2 Tail Call Optimization 11

Definition A call from method f to g is a tail call if this call is the last instruction (in
the series of instructions of f) before f returns.

In the context of Java above condition is satisfied if the following conditions hold.

• f immediately returns the result of g after it was invoked or it immediately returns
without a value.

int f() {

return g();

}

void f() {

g();

return;

}

• The call from f to g is not surrounded by an exception handler or by a synchronized
block as shown below.

int f() {

try {

return g();

} catch(Exception e) {}

}

int f() {

synchronized(obj){

return g();

}

}

• The method f is not marked as synchronized

synchronized int f() {

return g();

}

A synchronized statement around the method call causes the insertion of a monitorexit
instruction between the invoke of g and the return instruction thereby disabling the tail
call. If the method call is surrounded by an exception handler then removing f’s frame
removes the information about how f handles an exception that g might throw. Concep-
tually f has to look at whether an exception has occurred after g returns. So f no longer
immediately returns after the call to g. The same principle holds for synchronized

methods. Before the method f returns, it has to release the locked object. Hence there
is an instruction between the call to g and the return, disabling the tail call.

The Java language passes all parameters by value. The only possible references to
memory are pointers to objects that are allocated on the heap. The callee method can
not access memory in the caller thus this condition is always satisfied.

2 Tail Call Optimization 12

2.4 Tail Call Optimized Method Sequence

If we want our example to succeed on arbitrary long lists, the recursive call in accLen

to rest.accLen must be tail call optimized. The method call sequence then executes in
constant stack space instead of growing the stack with every recursive method call.

Tail call optimization of a call from method f to g is implemented by executing the
following steps.

• Moving the parameters of g onto the place of f’s parameters, so that it looks
like f’s caller called g directly. Instead of moving g’s parameters to f’s outgoing
argument area, they are moved to f’s incoming argument area, i.e. f’s caller’s
outgoing argument area.

• Removing the stack frame of f from the top of the stack.

• Jumping to the method entry of g.

Figure 2.4 shows those steps during the call of rest.accLen in our example. The figure
on the left shows the stack before the tail call to rest.accLen. The local variable
newLength has the value one. The length method passed zero as parameter to the
current method.

The tail call proceeds by putting the parameter to rest.accLen on the proper stack
slot just below length’s frame, i.e. on length’s outgoing argument area. Next it pops
the stack by setting the stack pointer to the current value of the frame pointer. Then it
pops the frame pointer of length off the stack. Figure 2.4 in the middle shows the state
of the stack at this point. It resembles a state as if length directly called rest.accLen

with a parameter of one.

In a third step the tail call jumps to the method entry of rest.accLen. It’s prolog stores
the frame pointer and creates the area for the local data. This state is shown in the right
figure. The stack frame of the initial accLen method is replaced by the stack frame of
the called rest.accLen method. Further recursive tail calls of accLen reuse the same
frame. The requirement that the execution stack must not grow unlimited is satisfied.

2.5 Motivation

Tail call optimization can help improve performance over a normal method call. If caller
and callee method require the same frame size, the compiler can omit the creation of
a new stack frame thereby saving some method call overhead. The optimization reuses

2 Tail Call Optimization 13

length's caller
...

FP

length's
frame

SP

Ret. address
0

Dynamic link

acclen's
frame

newLength: 1
outgoing parm

length's caller
...

FP length's
frame

SP Ret. address
1

length's caller
...

length's
frame

Ret. address
1

Dynamic link

acclen2's

framenewLength: 2
outgoing parm

FP

SP

Figure 2.4: Stack states during a tail call sequence

stack space. The memory required to perform a series of tail calls remains constant. This
can lead to better memory locality of the program again improving performance. But the
main motivation for this work is not improving performance but to gain expressiveness by
introducing a tail call optimized call to the JVM. Languages such as Scheme require tail
call optimization to be performed in order to be able to express iterative computations
[53]. Scheme features no native looping constructs such as a while or for loop. In
order to express a loop, Scheme programmers use a recursive tail call. Listing 2.2 shows
how the factorial function is calculated using a for loop and how a scheme programmer
writes the same function using a tail recursive call.

int fact(int n) {

int prod =1;

for (int curr=1; curr <= n; curr++)

prod = prod * curr;

return prod;

}

int scheme_fact(n) {

return scheme_fact_helper(n, 2, 1);

}

int scheme_fact_helper(int n, int curr, int prod) {

if (curr > n)

return prod;

else

return scheme_fact_helper(n, curr+1, prod * curr);

}

Listing 2.2: Factorial function

But we not only gain the ability to express direct loops using recursive method calls by
supporting tail calls. As Steele states in [24] a tail call may also be viewed as a “goto”
with parameters. Having such a construct allows us to define arbitrary control structures
using method calls. In the following we show two examples of such structures.

2 Tail Call Optimization 14

With the guarantee that a method call acts like a “goto” statement (not accumulating
stack space) we can express the transitions of a state machine using method calls. Listing
2.3 illustrates such a state machine with a traffic light, which has three states represented
by instances of Subclasses of the Light class. The Light class has one abstract method
called transitionTo, which represents the transition to the state. The Subclasses of
Light implement this method. The code is shown only for the RedLight class. The
method executes some state specific behavior (signalling of the current color). The last
instruction executed is the transition to the next state (the next color). This call has to
be tail call optimized or the stack overflows after a certain number of transitions.

public class RedLight extends Light {

Light next;

public void transitionTo() {

signalRed();

waitForSeveralSec();

unsignalRed();

next.transitionTo();

}

}

main(){

Ligth startState = new RedLight();

startState.next = new GreenLight();

startState.next.next = new YellowLight();

startState.next.next.next = startState;

startState.transitionTo();

}

Listing 2.3: State machine example

Another example frequently cited where the optimization is useful, is for writing inter-
preters. One way to implement an interpreter is to have an evaluation function, which
recursively evaluates expressions and their subexpressions. Within an interpreter it is
desirable that the execution of language constructs that do not extend the execution en-
vironment in the semantics of the language does not extend the execution environment
of the interpreter. Listing 2.4 shows part of such an interpreter. Similar to the example
before, if the recursive calls to evaluate are not tail call optimized the, interpreter is in
danger of running out of memory on complex expressions.

public class Evaluator {

Evaluator ifEvaluator = new IfEvaluator();

Number evaluate(Expression exp) {

if (exp.startsWithIF())

return ifEvaluator.evaluate(env, exp);

else if (exp.startsWith...

2 Tail Call Optimization 15

}

}

public class IfEvaluator extends Evaluator {

Number evaluate(Expression exp) {

if (super.evaluate(exp.getIfPredicate()))

return super.evaluate(exp.getConsequent());

else

return super.evaluate(exp.getAlternative());

}

}

Listing 2.4: Interpreter example

2.6 Approaches in Uncooperative Environments

As tail call optimization is required for functional languages, implementors on the JVM
have to work around the fact that there is no native tail call support. There are various
methods of how a tail call optimization can be simulated in an environment that does not
support it. Historically those techniques where developed in the context of C compilers,
which served as backends for functional language implementations. See for example
[55], which shows how to emulate tail calls using the trampoline technique in a ML to
C compiler.

The first technique is to only handle self recursive tail calls like the call in Listing 2.2.
The content of the function is transformed, so that the recursive tail call is replaced by a
jump to the beginning of the function, after the parameters have been assigned their new
value. The result of this transformation is shown in Listing 2.5. This transformation
is called tail recursion elimination [41] and is implemented in the following compilers
which target Java bytecode: the Scala compiler, a Standard ML to Java compiler [6],
OcamlJava and the Kawa Scheme compiler. Note that this method does not support
general tail call optimization.

Another technique is to compile the whole program (or the relevant parts that contain
tail calls) into one function and simulate tail calls by jumps to parts of it. This can be
seen as a generalization of the above method. This method supports general tail call
optimization, provided the target methods are all known at compile time. In a dynamic
environment such as the JVM, where classes may be loaded into a program after it has
been compiled, this method is not feasible. The 64 Kilobyte size limit of a method
further limits the use of this method on the JVM. To the best of our knowledge there
are no implementations on the JVM that use this method.

2 Tail Call Optimization 16

int scheme_fact_helper(int n, int curr, int prod) {

startlabel:

if (curr > n)

return prod;

else {

curr=curr+1;

prod = prod * curr;

goto startlabel;

}

}

Listing 2.5: Tail recursion elimination example

The trampoline technique allows to express general tail calls. A trampoline is a piece
of code, which repeatedly calls an inner function. If the inner function wishes to do
a tail call it simply returns an object (called Continuation in the example below)
containing information at which function to resume execution and which arguments
to apply. By returning to the trampoline instead of creating a new stack frame, the
stack does not grow unlimited. Listing 2.6 illustrates how this could be implemented
for the factorial function. The trampoline is in the factorial function in form of the
while loop, which repeatedly applies the continuation. As a result of the application
a new Continuation is received, which again is applied. This process is repeated until
an instance of the ResultContinuation is received, which contains the result of the
computation. The FactContinuation stores the arguments to the computation and
implements the computation in form of the apply method. Instead of the tail call a new
FactContinuation object is returned.

The Kawa Scheme compiler gives the user the option to turn on this method. But due
to the performance overhead this option is off by default.

Another method which is a variant of the method above is to only occasionally compress
the stack. Instead of shrinking the stack on every tail call, this is only done every so
often to prevent the stack from overflowing. In the context of the JVM the Funnel [50]
compiler is the only one to use this technique. Listing 2.7 shows how this could be
implemented for the factorial example. The trampoline in the factorial function is
extended so it catches the continuation in form of an exception. The apply function
is modified, so that it returns a continuation only if the tail call depth, the number of
sequent calls to the apply function, exceeds a limit. Otherwise the apply method is
directly called.

The disadvantage of the last two methods is that they incur a considerable performance
overhead—upto 15% slower [50]—and they complicate the implementation effort. This
increases the motivation to implement native tail calls on the JVM.

2 Tail Call Optimization 17

int factorial(int n) {

Continuation c = new FactContinuation(n, 2, 1);

do {

c = c.apply();

} while (! c instanceof ResultContinuation);

return c.result;

}

class FactContinuation {

int n; int curr, int prod;

FactContinuation(int n, int curr, int prod);

FactContinuation apply() {

if (curr > n) {

return new ResultContinuation(prod);

} else {

return new FactContinuation(n, curr+1, prod*curr);

}

}

}

Listing 2.6: Using a trampoline to achieve tail call optimization

2.7 Definition

The primary goal of tail call optimization, at least when it is required in functional
languages, is to enable the programmer to express iterative computation in constant
space with a recursive method call. In the context of languages like Scheme one can
give a syntactic definition of what calls are tail calls (essentially those calls that are
in a position where they are the last instruction before the method returns). Tail call
optimization can then formally be defined using an abstract machine as it is done in [16].
The essence of the description is that for a machine that uses stack-like stack frames,
tail call optimization replaces the calling methods frame with the called methods frame.
The goal to stay within bounded space is achieved.

For Java bytecode the recognition of tail calls is also quite simple. A call is a tail call
if the method call instruction (invokestatic, invokevirtual, invokeinterface) is
immediately followed by one of the return instructions (ireturn, etc) and the method
containing the tail call is not synchronized. There must be no exception handler installed
for the call instruction.

The access security mechanism of the JVM requires information within a stack frame. If
this information differs from the tail calling method to the called method the compiler

2 Tail Call Optimization 18

int factorial(int n) {

Continuation c = new FactContinuation(n, 2, 1);

do {

try { c.apply(0);

} catch (Continuation cont) {

c = cont;

}

} while (! c instanceof ResultContinuation);

return c.result;

}

class FactContinuation {

int curr; int prod; int n;

void apply(int depth) {

if (curr > n) {

throw new ResultContinuation(prod);

} else {

this.curr = curr+1;

this.prod = prod*curr;

if (depth < MAX_TAIL_CALL_DEPTH) {

apply(depth+1);

} else

throw this;

}

}

}

Listing 2.7: Using exceptions to compress the stack

cannot simply remove the calling method’s frame or the execution of the program might
violate the security rules. As the goal of this thesis is to guarantee tail call optimization
if a call is a tail call, we have to adopt a different definition of what tail call optimization
means than the one above.

We define the meaning of tail call optimization in terms of a series of sequent tail calls.
A series of sequent tail calls is a series of recursive calls where each call is a tail call.
The example below shows such a series with method’s f, g, h involved.

f
tailcalls−→ g

tailcalls−→ h
tailcalls−→ g

tailcalls−→ f

Definition Tail call optimization guarantees that a series of sequent tail calls executes
in bounded stack space.

2 Tail Call Optimization 19

The modified VM achieves this by replacing the caller’s stack frame by the called
method’s stack frame if possible. When this is not possible either because of the se-
curity mechanism or other technical reasons (see Chapter 4), the VM guarantee’s that
no stack overflow occurs in a series of sequent tail calls no matter how deep the recur-
sion is. The maximum bound within the series executes is the memory reserved for a
thread’s stack. By using this definition we stay within the spirit of the purpose of tail
call optimization in the context of functional languages.

3 Java HotSpot
TM

VM

This chapter introduces the reader to the Java HotSpot
TM

VM, the context of this work.
We first describe the basic functionality behind the Java Virtual Machine and follow
up with a description of the abstract execution model, which serves as specification for
implementations of a Java Virtual Machine. The last part of this chapter explains the
implementation aspects of the Java HotSpot

TM
VM that are relevant for this work.

3.1 Java Virtual Machine

As the name indicates a Java Virtual Machine provides a virtual machine environment
for the programming language Java [22]. Sun designed Java to be a safe general pur-
pose object oriented and concurrent language, which is portable across many platforms.
The language’s syntax is close to C++ with the more complicated features (e.g. multiple
inheritance) and security critical features (pointer arithmetic) left out. To provide porta-
bility, Java source files are not compiled to machine specific object code but are instead
translated to so called class files, which contain a platform independent representation
of the code to execute and meta information (e.g. a symbol table). The representation
is called Java bytecode. When a Java program runs this bytecode is executed by a Java
Virtual Machine on the respective platform. The connection between the original Java
program and the VM is the bytecode. The bytecode and the behavior of the VM is
specified separately from the Java language. As bytecode models an abstract machine,
it can be and is used as target for other languages.

Java is a type-safe language. Programs are checked against type rules during compilation
to ensure that they are safe. It is for example not allowed to add an integer value to a
variable declare as holding an object reference. To guarantee that those type rules also
hold when the bytecode is executed on a virtual machine, the bytecode is also typed.
Before a VM executes a method it verifies the bytecode. Hence class files that source
from an untrusted origin, e.g. from the internet, can be trusted not to execute malicious
code. If the verification fails an exception is thrown.

20

3 Java HotSpot
TM

VM 21

Java bytecode supports general purpose computing with instructions for integer and
floating point arithmetic and control flow instructions. Objects are instances of classes,
which define their methods. Classes can also have static methods. The bytecode fea-
tures instructions to allocate objects and to invoke methods on them. The programmer
does not need to take care of deallocating the memory of objects. Garbage collection
performed by the VM deallocates an object when there are no longer any references to
it. Many classes of memory errors are thus prevented. Concurrency is supported by
the VM in the form of threads and a shared memory model and the bytecode provides
synchronization primitives.

3.2 Abstract Execution Model

The Java Virtual Machine specification [38] defines the behavior of a Java Virtual Ma-
chine. This is done in the form of the specification of the bytecodes, the class file format
and an abstract model of execution. The execution model specifies that before execution
of a method the surrounding class must be loaded, linked and initialized. The class file
format consists of methods and their bytecode, a symbol table called the constant pool
and some meta information like the class’ super class and further attributes.

Approximately 200 bytecode instructions are specified. The first byte of a bytecode
instruction, the opcode, encodes the operation to be performed. It is followed by bytes
encoding the operands. Bytecode refers to other entities like class or method symbols
via symbolic references. These references are stored in the constant pool at a specific
index. For brevity the actual bytecode refers to symbols via their index in the constant
pool.

The loading process constructs an in-memory format of a class normally by loading its
binary representation from a file. After the class is successfully loaded it is linked. An
executable runtime representation of the class is created in the JVM. The linking process
verifies that the loaded class is well formed and the contained bytecode adheres to the
semantic requirements as stated in the specification. The bytecode verifier performs
this check. Initialization finally executes class variable and static initializers. Figure 3.1
illustrates this process.

After a class is initialized, its methods can be executed or instances of it can be created.
Each active method has an execution environment, which contains the parameters to the
method, local variables, an operand stack and a current instruction index. This is called
the active method’s frame. The execution of Java bytecode models a stack machine.
Bytecode instructions produce and consume values on the operand stack. For example

3 Java HotSpot
TM

VM 22

Loading Linking Initialization

Class
file

Binary
represenation

Runtime
represenation

Statics
initialized

Code exec.

Figure 3.1: Class loading and linking process

an iadd instruction pops two values of the operand stack and puts the result value back
onto it. Invocation of a method stores the current instruction index and creates a new
execution environment, which is linked to the calling methods environment. On return
of a method this link is followed to resume execution in the calling method.

0: aload_0
1: getfield ListElem/rest List;
2: iload_1
3: iconst_1
4: iadd
5: invokevirt List/accLen(I)I
6: ireturn

parameters
local variables
curr bytecode

operand stack

Execution Environment

Byte code

after invokevirtual

Stack grows during execution

States during execution

6

parameters
local variables
curr bytecode

operand stack

recv
2

recv
2

recv
2

recv
2

recv
2

recv
2

recv
2

recv

1

bytecode

locals

operand
stack

aload getfield iiload iconst_1

rest

iadd invokevirt ireturn

rest
2

rest
3

rest 3
2from field

+
return
value

ListElem.accLen(I)I method

Figure 3.2: Environment during execution of accLen method

Figure 3.2 illustrates how the execution stack grows (top half). The rightmost figure
shows the state of the execution stack after ListElem.accLen calls List.accLen method
on the rest of the list. The old execution environment stores the fact that it has to resume
at instruction index 6 once control resumes to it. A new stack frame is created for the
List.accLen method.

The VM views local variables and parameters uniformly and addresses them with the
same bytecode instructions. Parameters are considered as the first local variables, any
real local variables follow them. The ListElem.accLen method has two parameters: the
receiver object the method is called on and the integer parameter. The bytecode loads

3 Java HotSpot
TM

VM 23

the first parameter with the instruction aload 0 to the operand stack. The instruction
prefixes ’a’,’i’ denote that it operates on an object or on an integer.

The bottom half of Figure 3.2 illustrates how the execution environment changes during
the execution of the bytecodes of the ListElem.accLen method when called with the
argument 2. The bytecode loads the receiver to the operand stack. The getfield

instruction uses this object to retrieve the rest field. Then the argument (2) is pushed
onto the stack. The constant 1 is put on top. An iadd instruction adds those two
together and stores the result back onto the stack. Then a recursive method call to
List.accLen is performed. It uses the two operands on the stack and returns a result
value on the stack (3 in this case, the receiver is an object of type Empty). The ireturn

instruction causes the method to return the result. Execution is continued in the caller.

The specification does not say how to implement the features above but is strict enough,
so that programs are portable across VMs from different vendors. In the following we
describe how the Java HotSpot

TM
VM implements them.

3.3 Java HotSpot
TM

VM

The Java HotSpot
TM

VM implements above execution model by providing a mixed
mode execution environment [2]. Before execution starts, the runtime loads the code
of a method. At startup methods are executed in an interpreter. The VM runtime
maintains information how often a method has executed. When this execution count
crosses a certain threshold, an optimizing just-in-time compiler transforms the method’s
bytecode to machine code. Subsequent executions of the method use the optimized
code. The VM does not compile all methods to machine code at startup of the program,
because compilation of infrequently executed methods negatively impacts the overall
execution time.

Sun delivers the VM with two different compilers: The client compiler and the server
compiler. The goal of the client compiler is to achieve fast startup and a small memory
footprint while still providing good performance. Its primary target are desktop appli-
cations. The server compiler targets long running applications, where a longer startup
and compilation time can be tolerated. It achieves better code quality at the cost of
longer compilation times.

The interpretation of long running loops has a negative impact on performance. Execu-
tion of a loop does not increase the invocation count of a method, yet there might be as
much time spent during a loop as during the execution of a method. The VM addresses
this problem by using an optimization called on stack replacement [21]. The interpreter

3 Java HotSpot
TM

VM 24

maintains a loop counter for every method. If this counter exceeds a limit, execution is
continued in a compiled version of the method, at the point where the interpreter left
of.

To further enhance code performance, the compilers make assumptions about conditions
at certain points in a method. This enables the compiler to perform more aggressive
optimizations. To guard against possible executions where the conditions not hold, the
compiler inserts checks. If this check fails, the compiled frame is transformed into a
interpreted frame and execution is continued in the interpreter. This process is called
deoptimization [28].

The runtime is also responsible for garbage collection. The Java HotSpot
TM

VM uses an
exact garbage collector. It knows exactly which addresses in memory point to objects.
The interpreter knows the location of object pointers at any point during execution.
When garbage collection is required the interpreter is stopped at the currently executing
bytecode. The compiled code uses safepoints, special points in a method where the loca-
tion on the stack frame of object pointers is known. When code reaches a safepoint and
garbage collection is requested execution is halted. Figure 3.3 shows how the interpreter,
compiler and runtime play together.

Runtime Interpreter Compiler

byte
code

machine
code

AB

loads
interprets produces

OSR

Deoptimization

heap

garbage collects

references

references

compiles

objects

Figure 3.3: Overview of the Java HotSpot
TM

VM

The VM is implemented in the programming language C++ and uses many of its features
like inheritance, templates and stack allocated objects.

3.3.1 Runtime

The runtime provides several important features, which are required for the VM to
operate. It is separated from the compiler and interpreter via a runtime interface - a col-

3 Java HotSpot
TM

VM 25

lection of classes that encapsulated the functionality of the runtime and data structures
to pass data to and from the runtime. This facilitates that the different parts can be
developed independently of each other. The runtime is made up of the following parts.

• The classloader is responsible for loading classes and verifying them.

• Debugging information enables garbage collection and debugging of compiled meth-
ods.

• The garbage collector reclaims memory from objects that are no longer referenced.

• Deoptimization enables the transfer from compiled back to interpreted code.

• On stack replacement enables a transition from interpreted to compiled methods
during method execution.

Representation of objects Within the Java HotSpot
TM

VM, objects allocated on the
heap are instances of oopDesc subclasses. A pointer to such an instance is called oop. For
example, a Java language object is an instance of an instanceOopDesc and a pointer to
such an object is an instanceOop. The abbreviation oop stems from the term ordinary
object pointer, which is used for direct object pointers, in contrast to handles, which are
used in the runtime to identify object pointers. A handle is an object that is known
to the runtime and contains a pointer to an object. If garbage collection happens the
pointer in the handle can be updated.

Class loading involves the creation of VM specific data structures to represent the
loaded class. For every loaded class the Java HotSpot

TM
VM creates a data structure—

the instanceKlassOopDesc—holding the class methods and fields, a method table used
for dynamic method dispatching, the constant pool and further meta information about
the class. Class loading involves the following steps.

• Loading of the class from a file or via a user defined classloader from a different
source. The VM checks that the syntax of the file adheres to the specification.

• Linking of the class checks that the semantics of the class file is correct (e.g. a
class can not be its own superclass). The VM verifies the constant pool symbols
and it verifies the bytecode by abstract interpretation. Objects representing the
methods—the methodOopDesc—are created and filled with bytecode.

• Initialization calls static variable and static class initializers.

Figure 3.4 shows the created structure when the ListElem class is loaded. The super
class entry points to a representation of the class List. The fields array contains the
class field members rest and element. The constant pool contains the symbols used by

3 Java HotSpot
TM

VM 26

the class. The field storing the protection domain indicates where the class was loaded
from. The runtime uses this information when it performs security checks whether code
called by this class’s methods is allowed to perform certain operations (like reading from
or writing to a file).

super class
fields
constant pool
protection domain
methods
method table:

accLen()
...

method B

byte code

accLen()
length()

method accLen

bytecode:
 ...
 invokevirtual #1
 ireturn

List.accLen(int)
List
ListElem

instanceKlassOopDesc

Dir A:

methodOopDescconstantPoolOopDesc

arrayOopDesc

Figure 3.4: VM internal representation of ListElem class

Debugging information is used by the runtime for garbage collection, deoptimization
and when debugging is requested. Debugging like deoptimization transfers control from
compiled code to the interpreter. The compilers produce highly optimized code so that
it is not possible to know at every instruction how a corresponding interpreter stack
looks like, e.g. the location of the local variables, where pointers to objects are stored
and which objects are locked. To still be able to perform this transition the compiler
creates safepoints at which this information is available.

The compiler emits code at a safepoint, which checks with the runtime whether the
current code should halt and execution should continue in the runtime. This can be
done efficiently by trying to write to a predefined memory page. If the runtime wants
to stop execution of compiled code, it protects that memory page. When compiled code
reaches a safepoint it tries to write to that page, the operating system signals a memory
error to the program, the thread running the compiled code is suspended and program
execution resumes in a signal handler [1]. The signal handler transfers control back to
the runtime.

Debugging information consists of oop maps and scope descriptors. Oop maps specify
which addresses on the stack in a stack frame contain pointers to objects and are primar-
ily used by the garbage collector. They map an instruction address to a list of offsets.
To compute the location of a pointer the runtime adds this offset to the stack pointer of
the method’s stack frame. An oop map includes the incoming parameters of a method.

The scope descriptor consists of two lists of scope entries and a list of monitor entries.
The scope entries describe where the local variables and the values on the operand stack

3 Java HotSpot
TM

VM 27

reside in the compiled frame. The monitor entries describe at which offsets pointers to
monitor objects are on the stack.

The compiler generates debugging information for each safepoint in the code and stores
it together with the method’s code.

Garbage collection is supported by the Java HotSpot
TM

VM in the form of various
garbage collectors. The default collector for client application is a sequential collector.
The application is stopped for garbage collection and one processor is used to perform
the collection. There exists a concurrent collector [19], which runs interleaved with the
program for low maximum pause times and a parallel collector, which performs collection
in parallel on multiple threads but stops the program for maximum throughput. All the
collectors are generational collectors [56]. This means that the heap is split into several
generations. New objects are created in the young generation and collected by a stop-
and-copy [11] algorithm. After several collections they are moved to the old generation.
The collectors usually employ a mark-and-compact [58] algorithm to collect the old
generation. The young generation is collected more frequently because the expectation
is that many young objects die early [37]. The VM employs a third generation - the
permanent generation. This generation is collected independently of the other two.
It contains objects the VM uses like instanceKlassOopDescs and methodOopDescs.
Compiled code must only contain references to objects in the permanent generation.
This is required for performance reasons, because otherwise every collection of the young
generation has to update the addresses of object pointers in compiled methods.

Deoptimization is the process of converting a compiled frame back to an interpreted
frame. If class loading invalidates an assumption in compiled code, the runtime causes a
traversal of all threads and their stacks and checks whether a method on the stack used
this assumption. If a frame on the stack used the invalidated assumption, the frame
is marked for deoptimization. The runtime changes its return address to point to an
deoptimization entry in the runtime. When the compiled code returns to this method,
the changed instruction pointer causes the frame to be deoptimized. This is called lazy
deoptimization. The compiler can also insert checks into compiled code, which, if they
fail, cause the current frame to be deoptimized.

Deoptimization happens at safepoints. Figure 3.5 shows the stack during deoptimization.
The runtime stub performing the deoptimization is on top of the stack. The runtime uses
debugging information to construct an array of virtual frames. A virtual frame represents
an interpreter frame with its associated state (current bytecode index, monitors, locals
and operand stack) during the deoptimization process and is stored on the heap. Because

3 Java HotSpot
TM

VM 28

of method inlining a compiled frame can result in multiple virtual frames. With the
help of the virtual frames the runtime replaces the compiled frame on the stack with
possibly multiple interpreted frames. The runtime then changes its return address, so
that execution continues in the interpreter.

caller frame

compiled frame

deoptimization stub

inlined vframe
(bytecode index,

locals, operand stack)

inlined vframe

caller frame

interpreted frame

deoptimization stub

interpreted frame

create vframes create and fill interpreter frames

uses

heap

Figure 3.5: The deoptimization process

On stack replacement allows a loop running in the interpreter to transfer control
to a compiled version of the loop’s method. Java bytecode expresses looping constructs
through backward branches. The interpreter maintains a loop counter for every backward
branch. If this loop counter crosses a certain threshold, the interpreter calls into the
runtime. The runtime allocates memory on the heap, which it fills with the current
state of the interpreter frame: local variables and possible monitor objects. On return
from the runtime the interpreter removes its stack frame and jumps to a special entry
point in the compiled method - the OSR entry. The OSR entry creates a compiled
frame, moves the data from the heap structure to the frame and resumes execution at
the loop.

3.3.2 Interpreter

The interpreter operates by iterating over the bytecode instructions. It executes actions
that model the effect of the current instruction. Thereby it changes the operand stack,
modeled on top of the current interpreter frame. The execution of a method invocation
instruction causes the creation of a new interpreter frame. The parameters that are
pushed on the operand stack, thereby become part of the locals of the new interpreter
frame.

At startup the VM generates code pieces that the interpreter performs for each byte-
code [23]. The VM creates so called assembler templates, which contain the platform

3 Java HotSpot
TM

VM 29

dependent machine code. This machine code implements the behavior of the bytecode.
The start address of each template is stored in a dispatch table, which is indexed by the
byte that represents the corresponding instruction.

During execution of a method the interpreter maintains a pointer to the current bytecode.
The interpreter uses the value of the current bytecode to index into the table, retrieve the
address of the corresponding assembler template and jump to the start. The assembler
template executes usually modifying the operand stack and finally returning to the
interpreter. The interpreter then increases the current instruction pointer by the size of
the current instruction and execution continues there. Figure 3.6 shows how template
table, the interpreter, bytecode and the assembler templates play together.

To improve performance the interpreter keeps frequently used values in registers. An
example is the current bytecode index or the pointer to the current method. If an
assembler template wants to use these registers, it stores their content to a reserved
slot in the current interpreter frame. The same happens before method invocation. All
registers holding the state of the calling method are saved to the calling method’s stack
frame before a new interpreter frame is created.

method
bytecodeptr
bytecodeindex
table

byte bytecode = read at bytecodeptr;
jump table[bytecode];

bytecodeindex++;
byteCodepointer += i.size;

iload_1
iconst_1

mov eax 0

iload_1
iconst_1
iadd

InterpreterMethodOopDesc Template table

Assembler template

1

2

3

4

Figure 3.6: Execution of a bytecode in the interpreter

3.3.3 Client Compiler

The client compiler [33] was developed for interactive desktop applications. Because
bytecode is compiled just in time, the compilation time is perceived to be part of ex-
ecution time of a program. So this compiler focuses on fast compilation speed while
still providing good execution speed of the compiled code. Compilation acts on whole
methods and is split into multiple phases.

• Generation of a high-level program representation and application of global opti-
mizations. The part that implements this is to referred as front end.

3 Java HotSpot
TM

VM 30

• Generation of a low-level representation, which is close to the platform’s machine
code and suitable for register allocation. This and the following phase is imple-
mented by the back end.

• Generation of machine code by iterating over the low-level representation and
emitting code.

At first the bytecode of a method is transformed into a platform independent high-
level intermediate representation called HIR. This is done by abstract interpretation
over the method’s bytecode. The HIR consists of the control flow graph (CFG), which is
modeled with a set of basic blocks. Each basic block has a list of predecessors and a list of
successors. A basic block consists of a linked list of instructions, which are to be executed
consecutively and which are not interrupted by a jump or a jump target. The HIR is in
static single assignment (SSA) form [17]. This means that the value of every variable is
only assigned once. Variables can be replaced by the instruction computing their value.
This representation simplifies the implementation of several global optimizations, which
are applied during and after the construction of the HIR. Examples of optimizations
performed are constant folding and value numbering.

The CFG is built in two passes. The first pass computes the basic blocks by iterating over
the bytecode looking for jump targets and jumps. A jump target starts a basic block, a
jump or return instruction ends a basic block. Next, the second pass fills the basic blocks
with a list of instructions. This list is built by abstract interpretation using a stack-like
data structure to simulate the effect of the operand stack and a state array to eliminate
local variable loads and stores. Variables are replaced by instructions computing their
value.

All nodes of the CFG are subclasses of the Instruction class. There are nodes to
represent the high-level instructions and basic blocks. Below is a simplified listing of the
classes we can encounter in the HIR.

• The class BlockBegin and subclasses of BlockEnd (If representing a conditional
branch, Goto an unconditional jump and Return the end of the current method)
mark a basic block.

• Phi instructions merge result values from different predecessor basic blocks.

• Logical (LogicOp) and arithmetic (ArithmeticOp) operations. They refer to their
operands via a pointer to the instruction computing the value.

• Constants are instances of the class Constant

• Local instances are placeholders for incoming method parameters.

• Subclasses of AccessField represent reads (LoadField) and writes (StoreField)
from and to fields.

3 Java HotSpot
TM

VM 31

• Method invocation is represented by the Invocation class.

Each instruction stores its bytecode index, type and a pointer to the next instruction.
Some instructions that must be executed in order (e.g. loads and stores to fields) are
marked as pinned. Instructions not marked as pinned, can later be emitted in a different
order, determined only by their data dependency (e.g. code for the input operands of
an instruction must be emitted before the code for the instruction itself).

Figure 3.7 shows how the compiler links instructions together using a data structure
simulating the VM’s stack. The compiler creates HIR instructions for the bytecode
instructions and puts them onto the stack data structure. The iload 1 instruction
causes the compiler to retrieve the entry in the state array of second local variable. In
this example it contains the value of the first parameter.

Bytecode:
iload_1
iconst_1
iadd

Operand stack
simulation

index: 1
Local

index: 1
Local

value: 1
Const

x:
y:

Add

index: 1
Local

value: 1
Const

Figure 3.7: The compiler building the instruction list within a basic block

Next the backend of the compiler builds the low-level intermediate representation, called
LIR. The LIR is no longer in SSA form. Instead of pointers to instructions computing
the input value, it uses a unlimited register set to denote shared in- and outputs. If an
instruction uses the result of another instructions, both instruction refer to the same
virtual register. One instruction stores the result in the virtual register, the other uses
this virtual register as one of its operands. In addition to holding virtual registers the
operand of LIR instructions can be: physical registers (e.g. if the target requires a
certain register for the operation), addresses (e.g. to refer to fields or array elements),
stack slots and constants. During the construction of the LIR, the compiler replaces
each HIR instruction by one or more LIR instructions. An example LIR instruction that
does not exist in the HIR is the lir move instruction. It is used for example when field
or parameter load and stores are replaced.

This representation is more suitable for register allocation because registers are explicitly
visible. Also machine code generation is easier because platform specific limitations are
taken into account.

3 Java HotSpot
TM

VM 32

Figure 3.8 shows the HIR and LIR generated for the accLen method. The grey arrows
represent the links that each instruction has to its next one, dark arrows represent inputs
to an operation. The LIR is stored in the BlockBegin instruction of the HIR. Virtual
registers R41, R42 are used for the ”this” pointer and the parameter x (they are defined
in the std entry block, which has been omitted to simplify the presentation). Every
basic block starts with a label, which marks the beginning of the basic block. The next
move instruction stores the value of the field rest in virtual register R43. It uses the
”this” pointer and a field offset (Disp:12). The add instruction adds 1 to the incoming
parameter. Before the virtual call to accLen the parameters are placed in fixed registers
(ecx, edx) defined by the calling convention. Finally the return instruction passes the
result of the method to the caller.

Local "this"

GetField "rest"

Local "x"

0: aload_0
1: getfield ListElem/rest List;
2: iload_1
3: iconst_1
4: iadd
5: invokevirt List/accLen(I)I
6: ireturn

Const "1"

Add

Invokevirt "accLen"

BlockBegin

Return

label [label:0x80a9820]
move [Base:[R41] Disp: 12] [R43]
move [R42] [R44]
add [R44] [int:1] [R44]
move [R44] [edx]
move [R43] [ecx]
icvirtual call: [addr: 0x0]
move [eax] [R45]
move [R45] [eax]
return [eax]

HIR LIR (before register allocation)Bytecode

Figure 3.8: HIR and LIR for the ListElem.accLen method

The compiler uses a linear scan allocator [59] to assign physical register of the processor
to the virtual registers. The linear scan algorithm operates on a whole method and
uses one linear pass over the method. If the allocator runs out of physical registers the
content of a register is saved to the current stack frame. This process is called spilling
and the spaces on the stack are called spill slots.

After the register allocator has finished, the compiler emits the machine code. It trans-
lates each LIR instruction to machine specific instructions. At this point the compiler
knows the state of the operand stack and where variables and monitors reside. It uses
this information to generate debugging information at safepoints. Finally the compiler
inserts code for uncommon cases like exception handling or garbage collection at the end
of the method.

3 Java HotSpot
TM

VM 33

3.3.4 Server Compiler

The server compiler [44] targets long running server applications. For this kind of ap-
plications compilation time does not matter much, since it only has impact on the
performance during a warm up phase. Also server systems usually have more processors
and compilation can be done in background. The compiler produces highly optimized
code at the cost of longer compilation times.

In contrast to the client compiler, which uses a control flow graph (basic blocks where
each basic block maintains a sequence of instructions), the server compiler uses a data
structure [15] as intermediate representation similar to a program dependence graph
[20]. Both data dependence and control dependence are represented by edges pointing
from the use of a value to its definition. The resulting graph is more complex but allows
for an easier implementation of global optimizations.

The intermediate representation, which the compiler uses until register allocation, is
also in SSA form. The IR uses two kinds of nodes. In the beginning the compiler builds
a platform independent representation of the program called the ideal graph. During
instruction selection the compiler generates machine specific nodes from the ideal graph
resulting in a MachNode graph.

The server compiler uses the following phases, which are also found in traditional com-
pilers.

• Parsing constructs the ideal graph from bytecodes. During parsing the compiler
performs local optimizations.

• Machine independent optimization operate on the ideal graph. Some of them are
applied iteratively until they reach a fixed-point, e.g. no changes happen from
one application to another. During this phase global value numbering, constant
propagation, dead code elimination and some loop optimizations are applied.

• Instruction selection generates the MachNode graph using a bottom-up rewrite
system [45]. The ideal graph is split into subtrees. An optimal assignment of
machine specific nodes to the subtree is built by recursively applying a BURS
algorithm. The possible instructions and their associated costs are recorded in an
architecture description file, which is used by the algorithm.

• A global code motion algorithm [14] constructs a control flow graph. Basic blocks
are created and filled with instructions.

• Scheduling orders the instructions within a basic block. The compiler selects be-
tween available instructions based on a score. The score is computed using several

3 Java HotSpot
TM

VM 34

heuristics (e.g. instructions that store to the stack or memory are given a higher
score in order to free registers used for their input operands early).

• Register allocation converts the graph into a non-SSA form and assigns physical
registers. A graph coloring [10] allocator is used. It is slower than the linear scan
allocator of the client compiler (Asymptotic time complexity of O(n2) instead of
0(n) where n is the number of virtual registers) but produces better code (less
spills). At the end of register allocation the compiler generates the debugging
information for safepoints.

• Machine code is emitted by iterating over the MachNode graph.

The server compiler uses a mechanism similar to the client compiler to build the graph.
It maintains the current VM state, which holds the state of the operand stack and the
values of the method’s locals during parsing. The program dependence graph consists
of nodes representing the operations and edges representing control flow and data flow
dependence. The nodes are implemented as instances of a subclass of Node. Edges are
simply pointers to other nodes. Each node has an array of Node pointers, which represent
its inputs and produces one value. If a node has several results, it conceptually returns
them as tuples, e.g. data and control flow. The compiler inserts projection nodes to
project a result out of this tuple. Examples for nodes that only produce a data output
are arithmetic operations (e.g. AddI) or logical operations (e.g. CmpI). An example of a
node that produces only control flow output is the If operation. A Region node takes
the place of basic blocks. It merges control flow outputs from other predecessor blocks.
A corresponding Phi node merges their data outputs.

Root

Start

Parm
Control

Parm
Parm1

Parm
Parm2

ConI
int:12

ConI
int:1

AddP
ListElem

AddI
int

LoadP
List

CallDynamic
accLen

Proj
Control

Proj
int

Return
basic block

Figure 3.9: Ideal graph of accLen method

3 Java HotSpot
TM

VM 35

Figure 3.9 shows a simplified (e.g. exceptional behavior is left out and some output
values are omitted) ideal graph created by the compiler for the accLen method. The
Root node is generated for every method. It is used as input for instructions that exit the
method and simplifies algorithms operating on the graph. The Start node represents the
state of a method before any instructions are executed. It has a result tuple containing
the control flow and the parameters. Those values are extracted by projection nodes
Parm Control, Parm Param1 (containing the object) and Parm Param2 (containing the
integer parameter). The bytecode instruction getfield is replaced by two instructions
that compute the field’s address and load its value (AddP and LoadP). The iadd is
represented by the AddI instruction, which uses the method’s integer parameter and a
constant (ConI). The method call (CallDynamic) uses the two data values. It also has
a control flow input, which source is the control flow output of the Start node. Finally
the Return instruction marks the return from the method. It merges control and data
flow outputs (Proj Control and Proj int) of the method invocation.

4 Implementation

This chapter describes the implementation of tail call optimization on the Java HotSpot
TM

VM. The optimization is implemented for the IA-32 platform. The goal of this work
are guaranteed tail calls, i.e. the programmer marks a call as tail call and the VM
guarantees that the call is optimized or it throws an exception. The bytecode verifier
checks the conditions that must hold for a correct tail call. A method call is treated
differently within the VM dependent on whether the call target is known to be unique
at compile time or not. Tail calls use the same mechanism as regular calls to improve
call performance.

Removing the caller’s stack frame might violate security semantics. The implementation
detects such cases. Depending on with which option the VM was started, it either
throws an exception or executes a regular call. If the execution stack overflows the
deoptimization infrastructure is used to compress the stack. We can therefore guarantee
that a series of tail calls executes in bounded stack space even in the presence of the
Java access security mechanism.

4.1 Target Hardware Platform

Sun provides implementations of the VM that run on two architectures: x86 and Sparc in
two addressing modes 32bit and 64 bit. Both the compilers and the assembler templates
generate machine code of the target platform. This work provides an implementation of
tail calls for x86 in 32bit mode also referred to as IA-32 [31]. The execution environment
of IA-32 is made up of the following parts.

• Address space: The VM generally uses a flat memory model. Memory appears as
a continuous space of maximum 4 Gigabyte.

• General-purpose registers and operations: 8 general-purpose registers (eax, ebx,
ecx, edx, esi, edi, ebp and esp), an instruction pointer (eip), control and flags
registers are used together with integer, control flow and memory access instruc-
tions to handle program flow and integer arithmetic.

36

4 Implementation 37

• Stack operations: Several operations (e.g. push, pop, call and ret) are available
to manipulate the program stack. They manipulate or use the stack pointer register
esp.

• x87 Floating Point Unit: Several floating point registers together with floating
point instructions provide support for floating point arithmetic. The floating point
data registers are organized as a stack. This complicates code generation.

• XMM registers: With the introduction of the SSE extension 8 additional XMM
register are available, which can hold floating point values. Several instructions op-
erating on these registers are available which implement single (SSE1) and double
(SSE2) precision floating point arithmetic.

IA-32 is a register-memory architecture [25] and as such can access memory as part of
any instruction. The instructions operate on zero or more operands. The instruction
format of logical, arithmetic and data move instructions allows the specification of two
operands and one must be a register operand. The other operand can be either an
immediate value, a register or a memory operand. The following listing shows typical
instructions.

mov %eax %ebx // Move the content of register ebx to eax.

mov %eax [%ebx] // Move the content of memory at the address

// designated by the value in ebx to eax.

mov [%ebx] %eax // Move the content of eax to memory at address ebx.

add %eax %ebx // Add eax ebx and store the result in eax.

add %eax 5 // Add five to the value in eax.

The VM detects whether the SSE instructions are available and uses the appropriate
instructions for encoding floating point arithmetic. For this work we assume the presence
of SSE2, i.e. it was not verified that code generated for the floating point unit is correct
in the presence of the tail call implementation. Both compilers and the interpreter use
esp as stack pointer for their execution stacks.

4.2 Bytecode Instruction Set Changes

Java bytecode features four bytecode instructions for the different kinds of method in-
vocations.

• invokestatic calls a static method in a class.

• invokevirtual calls a member function of an object. The method dispatch code
uses the type of the object, i.e. the objects class or one of its super classes must
implement this method.

4 Implementation 38

• invokeinterface calls a method implemented by an interface. The call searches
the particular runtime object for the appropriate method.

• invokespecial calls an initialization method, a super class method or a private
method. The call target is known before runtime.

Each bytecode instruction has a fixed size and is encoded in a series of bytes. The first
byte denotes the instruction type and is possibly followed by operands. Currently the
wide prefix is used to prolong the operand size of the following instruction’s operand.
Figure 4.1 (b) illustrates this. Normally the istore instruction has an operand of one
byte specifying the index of the local variable to store to. If the istore instruction is
prefixed with wide a two byte operand can be used to specify the index. Using the wide

prefix before a method invocation has no meaning and code containing it is rejected by
the bytecode verifier. We use it to denote a tail call. The VM is modified so that it
recognizes such marked calls and handles them appropriately. Figure 4.1 (a) shows the
modified bytecode of the ListElem.accLen method.

0: aload_0
1: getfield ListElem/rest List;
2: iload_1
3: iconst_1
4: iadd
5: wide
 invokevirt List/accLen(I)I
6: ireturn

Bytecode with a tail call

wide

istore #local

istore #local

Prefix extends operand size

byte
istore 255

wide istore 257

(a) (b)

Figure 4.1: Bytecode of a method containing a tail call

4.3 Bytecode Verifier

During class loading the bytecode verifier is called to check that the bytecode does not
compromise the virtual machine. The verifier checks that the following conditions hold
[9]:

• The maximum operand stack size specified in the class file is maintained during
execution of the bytecode.

• Targets of control flow instructions must be within the bounds of the methods
bytecode and must point at the start of an instruction. Control flow can not fall
off the end of the bytecode.

• Instructions have appropriately typed arguments on the operand stack.

4 Implementation 39

• Loads from local variables have the appropriate type.

• The start and end values for the exception handler point at the start of instructions.
The index that specifies the start of the exception handler code must start at a
correct instruction.

Before Java version 6, the Java HotSpot
TM

VM used a data flow analysis [35] to verify
above conditions. With the introduction of Java 6 this check proceeds by type checking
[48] instead of type inference. This was done in order to reduce startup time. The
type inference algorithm requires a complex data flow analysis, which takes longer than
the type checking implementation. Class files that want to use the new verification
mechanism specify a class file format version of 50 or greater. To aid the type checking
such a class file must also contain extra type information for certain points in the method.
This data is called the stack map table.

The stack map table consists of zero or more stack map frames. A stack map frame
describes the type state of local variables and the operand stack at a specific bytecode
index. It is generated at every instruction that changes the control flow, so that the
next instruction in the control flow is not the next instruction in the bytecode stream
(e.g. goto or ireturn) and at target of branches. The verifier uses this data during
type checking. It simulates the effect of instructions between two stack map frames. If
it arrives at an instruction that is associated with a new stack map frame it compares
its internal representation with it. If they match, i.e. the types on operand stack and
local variables are the same, it proceeds. Otherwise the verification fails.

// Initialized with max_stack, max_locals of the current method.

StackMapFrame current_frame;

// Stack map table contains stack map frames stored in class file.

StackMapTable table(method);

// Representation of the methods bytecode.

ByteCodeStream bcs;

bool changes_control_flow = false;

while (bcs.hasNext()) {

opcode = bcs.next();

bci = bcs.bci();

if (changes_control_flow || table.has_frame_at(bci)) {

// Check that stack map frame at bytecode index from class file matches current_frame.

table.frame_at(bci).match(current_frame);

}

switch (opcode) {

case _iadd:

// Fails if operand stack does not contain an integer.

current_frame.pop_stack(integer_type);

current_frame.pop_stack(integer_type);

current_frame.push_stack(integer_type);

changes_control_flow = false;

break;

4 Implementation 40

case _goto:

table.check_jump_target(current_frame, goto_target);

changes_control_flow = true;

break;

Listing 4.1: Bytecode verification of a method

Figure 4.1 shows a simplified version of the code used by the verifier. If the verifier
encounters an iadd instruction, it pops two integer types off the simulated operand
stack. If this fails because the operand stack does not have two such values the verifier
throws an exception - the verification has failed. Then the result type of iadd is pushed.
The goto instruction causes verification that the current stack map frame matches the
frames stored in the stack map table at the current instruction and at the jump target.
To deal with tail calls the verifier checks the following conditions at a tail call site.

• The invoke instruction must be immediately followed by a return instruction.

• The current method is not synchronized.

• No exception handlers are installed over the tail call invocation.

4.4 Method Invocation Overview

Method invocation plays an important role in an object oriented language. Dividing
functionality between many methods of objects is considered good practice. Therefore
it is important to have fast method calls to get a well performing implementation. In
general we can differentiate between two kinds of method invocations.

• Static calls have a target that is known before runtime. They can usually be
translated into a simple call target assembler statement where target is the
address of the called method.

• Dynamic calls have a target that is computed at runtime. They usually dispatch
on the type of the receiver object. Examples of dynamic calls are virtual method
and interface calls. They are implemented by first computing the address of the
called method based on the objects method table and then calling that address.
The following example shows the code for a virtual method call via a method table.

mtable = receiver.type.mtable // Query object for method table.

target = mtable[meth_offset]

call target

Static calls are faster, not only because the target does not have to be computed at
runtime, but also because modern processors can schedule the code after a call to a

4 Implementation 41

known target earlier, further improving performance of the executed code. In an object
oriented language like Java most calls are virtual calls or interface calls. For a virtual
call the method offset is known at compile time. It can be computed because all classes
that implement a virtual method are arranged in a class hierarchy. If a class A extends
a class B it inherits all its methods. The method table of B then simply consists of the
method table of A with new methods of B appended to it.

But a class can implement an arbitrary number of interfaces independent of the class
hierarchy. At runtime the method table has to be searched for an interface method
because the offset can not be predetermined. A class C might implement interface I1

with a method i1. Another class D might implement two interfaces I1,I2 with respective
methods i1,i2. A third class E might only implement interface I2. The offset for
interface I2.i2 in the method table is either zero or one depending on the type of the
object. Dispatch code for interface calls has to proceed by searching the table.

The interpreter resolves call targets every time it arrives at a call site. To improve
performance of calls in compiled code the VM uses three techniques.

• Inlining removes the overhead of a call by replacing it with the body of the called
method. The compiler can only inline a method if the target is known at compile
time.

• Class hierarchy analysis CHA [18] inspects the loaded classes. If there is only
one class that implements a virtual method or only one class that implements an
interface method, the compiler can treat the call like a static call. It either inlines
the call or emits code for a static call. Because the JVM supports dynamic class
loading, the runtime records a dependency between such optimized calls and the
calling method. Deoptimization is initiated for the calling method, if class loading
causes the result of a previous CHA to be invalidated.

• Inline caching [27] works bases on the assumption that although a dynamic call
cannot be guaranteed to always have one target, specific call sites might encounter
only one dynamic receiver type during execution of the program. Instead of a
dynamically dispatched call, a static call to the first encountered receiver’s method
is emitted. The target of this call is a special method prolog that checks whether
the receiver is of the expected type. If this check fails, the call target is replaced
by a dynamically dispatched call.

To support inline caches and dynamic linking of call sites, the compiler does not emit
the dispatch code or direct static calls to the target method. Instead it emits a call
to the runtime. When the call site is invoked for the first time control transfers out of

4 Implementation 42

the compiled code into the runtime. The runtime can then patch the call site with the
appropriate target.

Figure 4.2 (a) illustrates how inline caching works. Initially every dynamic call goes to
the runtime. The first time the call executes, control transfers to the runtime. It patches
the call to point to a special prolog of the current receiver’s method and continues
execution there. The prolog checks that on subsequent calls to this method the receiver
type is the same (the call passes the assumed receiver type as argument). If this check
fails, the runtime relinks the call to a dynamically dispatched call. Figure 4.2 (b) shows
how dynamic dispatch works using the type pointer, which is embedded in the header
of every object. A header word points to the object’s class. Embedded in that class is
the method table, which is used during a dynamic call to get its target.

receiver = #objaddr
token = NULL
call Runtime_resolve

Call site as emitted by compiler

special prolog:
 check token = recvr type
 call runtime if check fails
normal_method_entry:
 ...

classA.method1
receiver = #objaddr
token = classA
call classA.method1.special_prolog

fixup callsite
Runtime_resolve

Inline cache

receiver = #objaddr
token = classA.method1
call dynamic_dispatch_stub

 jump recv.type.mtable[1]

Receiver check failed
Dynamic method dispatch

...
mtable[0]
mtable[1]

ClassA
"hello"
1

type
instanceKlassrecv

method

Inline caching Dispatch on receiver type

mtable = receiver.type.mtable
target = mtable[meth_offset]
jump target

(a) (b)

Figure 4.2: Dynamic dispatch and inline caching

A call site in compiled code can be in one following four states depending on the type
of the call.

• Unresolved : After a method is compiled, all call sites target the runtime.

• Static: If the compiler has determined statically that there can only be one possible
receiver type (either through CHA or because the invocation is a static invocation),
the runtime patches the call target to point to the receiver’s method entry.

• Monomorphic: All dynamic (virtual and interface) calls that do not have a stati-
cally determinable unique receiver type initially use an inline cache. Because the
call can handle only one type of object, it is called monomorphic.

• Polymorphic: If the receiver type check fails at a monomorphic call, the target of
that call is changed to point to a stub that does the dynamic dispatching.

A method call in the VM in general consists of the following parts.

4 Implementation 43

• Lowering of arguments. The interpreter puts all arguments on the stack. This
happens as part of the simulation of operand stack bytecodes. The compiler uses
some registers for arguments and places the rest on the stack.

• Setting special tokens (compiler only). Before the call instruction the compiler
emits an instruction that stores a value to a register or to a stack slot that is
reserved for this purpose. This instruction is later patched by the runtime to
contain the expected class (instanceKlassOop) in case of a inline cache call or to
hold the methodOop for polymorphic calls (used by the interpreter to determine
which method to execute). The tail call implementation sets an additional security
token to deal with access security (see Section 4.6).

• Call to target. Depending on the type of call and the state of the call site the
target is either the runtime, an inline cache, dynamic dispatch stub or an adapter
to interpreted code.

• Check at target. The target might include a check that involves the token set
before the call. If the check fails, control resumes in the runtime. The runtime
handles the failure by replacing the call target.

To support monomorphic calls every compiled method has two entry points: an unveri-
fied entry point (UEP), which performs the class check of the inline cache and resumes
control in the runtime if the check fails, and a verified entry point (VEP) the start of the
normal prolog of the method, i.e. it contains the method’s stack frame setup followed
by the method’s code.

Compiled methods expect a different layout of their arguments than interpreted meth-
ods. To bridge between interpreted and compiled methods adapters exist, which shuffle
the arguments accordingly. The adapters are code fragments that are executed before
execution continues in the interpreter or in compiled code.

When implementing tail calls, the question arises, when to move the arguments to the
caller’s caller frame and when to remove the calling frame. This can be done before the
actual call instruction happens as explained in Section 2.4. The interpreter actually does
this. It knows the target and can determine whether the tail call is allowed (looking at
the security information). A second variant is to place the arguments like for a regular
call but then proceed execution of the call in a special prolog, which moves the arguments
onto the caller’s caller and pops the caller frame off the stack. After this, the prolog
continues at the normal method entry. The advantage of this method is that the prolog,
i.e. the receiver, can decide whether to really pop the frame or proceed like a normal
method call. For compiled code this variant of executing a tail call was initially chosen
for the following two reasons.

4 Implementation 44

First, a call site may go into the runtime. Whenever control enters the runtime a garbage
collection can be triggered. This collection causes a stack traversal looking for object
pointers. Because the tail call has moved the arguments onto the calling method’s
incoming argument area instead of the outgoing argument area the runtime does not see
the object pointers. Figure 4.3 illustrates this problem.

Caller frame

Tail calling
frame

(tailcaller)

tailcaller(Obj o, int i)
 ...
 tailcall meth(i, o)

Caller frame

Tail calling
frame

(tailcaller)

1
#obj

paramters

Before tail call Tail call moves
args onto caller

Oops@meth(i,o)
Object esp+0
...

Collector

Garbage collection
sees wrong oops.

Figure 4.3: Wrong oop map at tail call when entering runtime

If the arguments are moved at the target, this problem does not exist because the runtime
sees the state of the frame before the arguments are moved. This problem can be dealt
with by introducing special code in the runtime, which corrects the oop map in such a
case.

Secondly, a polymorphic tail call can decide in the dynamic dispatch code not to remove
the frame from the call stack because of security issues (see Section 4.6). If the code
at the call site has already moved the arguments onto the caller’s caller before the call,
execution can not continue at a normal method entry. The arguments have to be moved
back onto the caller’s outgoing parameter area. This complicates the implementation
because extra entry points are needed, which shuffle the arguments back onto the caller
frame. Hence it was initially decided to move the arguments in the called method’s
entry. Compiled tail calls move their arguments and pop the frame at the call target
(the called method’s prolog). The existing method entry points are extended by tail call
entry points, which mirror the functionality of the normal entry points and also move
the incoming arguments and remove the calling frame.

4.5 Method Abstraction

Call sites in compiled code can be static, monomorphic or polymorphic. The call could
be executed in the interpreter and target a compiled method or vice versa. To support
the different kind of calls the VM uses the following data structures.

4 Implementation 45

• instanceKlassOopDesc

• methodOopDesc

• nmethod

• AdapterHandlerEntry

methodOopDesc

bytecode

fields
...
protection_domain
methodTable

instanceKlassOopDesc
max_stack
fields
innvocation_cnt
...
code
adapters
from_compiled
from_comp_tailcall
from_interpreted

methodOopDesc
vtable

itable
interfB.method2
interfB.method1
interfA.method1

...
code
UEP
VEP
UEP_tailcall
VEP_tailcall

nmethod

bytecodeint_2_comp
comp_2_int
comp_2_int_tailcall

AdapterHandlerEntry
native code

oop maps
scope desc
reloc info

Figure 4.4: Data structure used for method calls

Figure 4.4 shows how those data structures are connected. The instanceKlassOopDesc

is the internal representation of a Java class. Among other information (e.g. offset of
fields) it contains the method table. The method table consists of entries for the class’s
virtual methods, followed by entries for interface methods. The table is used during
dynamic method dispatch. A virtual method call indexes into the table to get the target
method. An interface call searches the table for a matching interface. The protection
domain is used by dynamically dispatched tail calls to verify that caller and callee are
in the same security domain.

The methodOopDesc represents a Java method. It is generated during class loading and
contains the methods bytecode, some meta information (e.g. the maximum operand
stack size or the invocation counter), a pointer to the method’s adapters, entry points
to continue execution at, and a pointer to the method’s compiled code (the nmethod).

The nmethod describes a compiled method. It is generated after the compiler translated
a method and stores the method’s code, debugging information, addresses of the different
method entry points and relocation information. The relocation information stores the
call instructions’ types (e.g. static or dynamic call). The runtime uses the method entry
points and the relocation information during resolving the call target, e.g. when it sets
the target of a monomorphic call.

The AdapterHandlerEntry contains the adapter code to be executed when a transition
between compiled and interpreted code happens. It is shared among methods that have
the same signature. The method entry points in the methodOopDesc might point to

4 Implementation 46

such an adapter. The from compiled entry points to a compiled-to-interpreted adapter
as long as the method is not compiled. After the method is compiled the runtime sets
the value of this entry point equal to the compiled code’s prolog. Thus, dynamically
dispatched method calls that use this entry point always encounter the correct code.

To support tail calls we add extra entry points to a compiled method. The code at this
entry points performs the transfer of the methods parameters onto the calling’s frame
incoming parameter area (i.e. the caller’s caller frame) and removes the calling frame.
Finally the code continues execution at the normal method entry.

4.6 Access Security Mechanism

The Java HotSpot
TM

VM makes security decisions based on the execution stack [57].
The VM has access to valuable system resources, e.g. files or network access. As classes
can be dynamically loaded and the code in those classes can sometimes be only partially
trusted, it is desirable to restrict access to resources for certain classes and their methods.
To support this, the VM features the concept of protection domains [51]. In the context
of the VM a protection domain encloses a set of classes whose instances are granted the
same permissions. A protection domain object can be constructed with a static set of
permissions, or it can be instantiated, so that the permissions for this protection domain
object are obtained at runtime using a policy object. The policy object can be user
defined. The default policy object obtains the permissions from a file.

The class loader assigns the protection domain to a class during loading. This makes it
possible to assign different permissions to classes that were downloaded over the internet
than to local trusted classes.

To check whether a method has permission to perform an action in the current execu-
tion context, it calls the checkPermissions method on the AccessController object.
To indicate what kind of permission it needs, it passes an instance of a subclass of
Permission. This allows the definition of arbitrary permission kinds, without the ac-
cess controller having to know every type of permission. It can act on the abstract
Permission type.

FilePermission fp = new FilePermission(’file/path’, ’read’);

AccessController.checkPermissions(fp);

// Read file ...

The checkPermissions method then traverses the execution stack of the current thread
gathering all callers. Each called method maps to a protection domain via the class
it is defined in. The so obtained protection domains are used to answer, whether the

4 Implementation 47

checkPermissions call succeeds or fails with a SecurityException. The permissions are
built by intersecting all permissions obtained. If there is one protection domain that does
not have the requested permission the check fails. Figure 4.5 illustrates this procedure.

ClassA.meth

ClassEvil.do

File.read

ClassA.main

AccessController.checkPermission(''/root" "read")

ProtectionDomain
A

ProtectionDomain
Untrusted

ProtectionDomain
System

Permission
 "/all" "read"

Policy

Permission
 "/home/u" "read"

Permission
 "/all" "read"
 "/all" "write"

intersection
of

Permissions

"/home/u" "read"

Execution stack

1

2

3

fail

Figure 4.5: Access security mechanism

If a method’s frame is removed, the security behaviour might change. Hence a tail call
could change the security behaviour, because it removes the calling frame. If the calling
frame is the only frame on the stack that points to its protection domain, a possibly
more restrictive permission set is lost. Therefore a possibly dangerous operation, which
might have otherwise failed with a security exception, can now succeed. A safe tail call
implementation must prevent this from happening.

On the other hand, if the calling method and the tail called method have the same
protection domain (in the methods’ classes), the caller frame can safely be removed.
During a stack walk the protection domain is still observed. We can illustrate those two
cases with Figure 4.5. If the method meth tail calls do, meth’s stack frame is removed.
This has no observable impact on the security behaviour because the protection domain
A is still referenced by main. But if the method do tail calls method read, there is no
frame left pointing to the untrusted protection domain. In this case the permission check
succeeds, although the untrusted code has executed.

To prevent the removal of unobserved protection domains, every call site needs to traverse
the current call stack, checking whether the protection domain of the caller already occurs
in one of the previous callers. This is feasible but incurs a considerable execution time
overhead. Our implementation uses a more conservative approach. The VM prevents
illegal security behaviour by checking that the protection domains of tail calling method
and tail called method are equal. If they are not, it proceeds either by leaving the frame
on the stack (i.e it proceeds like a normal call) or by throwing an exception. The desired

4 Implementation 48

behaviour can be set by a parameter passed to the VM. The overhead of this method is
much lower, as long as the stack does not overflow.

For static and monomorphic calls the check only has to be done once, when the runtime
links the target of the call. Protection domains are set during class loading and can
not be changed thereafter. Therefore it is sufficient to check whether caller and callee
domain match once for calls with one target that does not change. Polymorphic calls
(using the dynamic dispatch path) can have multiple targets. Therefore the equality has
to be checked on every call. Polymorphic tail call sites pass a security token containing
the protection domain of the caller method. The dynamic dispatch stub for tail calls
checks whether the protection domain of the receiver method matches. If the check
fails, it proceeds at a normal method entry. Otherwise it continues at the tail call entry.
Figure 4.6 shows this.

Tail call site as emitted by compiler
receiver = #objaddr
recvr_token = ...
security_token = caller.pd
call dynamic_dispatch_stub

target = recv.type.mtable[0]
if (target.pd == security_token)
 jump target.VEP_tailcall
else
 jump target.VEP // normal call

Dynamic method dispatch

protection_domain
mtable[0]
mtable[1]

ClassA
"hello"
1

type
instanceKlassrecv

VEP
VEP_tailcall

methodOop

Figure 4.6: Dynamically dispatched tail call uses security token

If there is a series of tail calls, which are disabled because of differing protection do-
mains, and the series is long enough, a stack overflow would normally happen. The
implementation prevents this by compressing the stack at that point using the deopti-
mization infrastructure. A vframe representation of the stack is built containing only
those vframes in a series of tail calling vframes that have different protection domain.
Because a typical application involves only a hand full of protection domains the stack
is significantly compressed and execution can resume. Figure 4.7 illustrates this process.

4.7 Interpreter

The interpreter executes a method by interpreting bytecode per bytecode. It exe-
cutes an assembler template for each bytecode. To support tail calls templates for
invokevirtual, invokestatic, invokespecial and invokeinterface that are pre-
fixed with the wide bytecode were added. This section describes the additions to the
interpreter.

4 Implementation 49

A.method

B.method

A.method

B.method

A.method

...

P.Domain A
vframe

A.method
vframe

B.method

A.main A.main

A.method

B.method

P.Domain B

Execution stack Execution stackRuntime

A.method()
 tailcall b.method()

B.method()
 taicall a.method()

Code

Stack overflow detected.
Execution continues in runtime.

Stack is
compressed.

A.method

Figure 4.7: Tail call stack frames are lazily compressed

4.7.1 Dispatch of ’wide’ Templates

In order to support bytecodes that are prefixed with the wide instruction, the inter-
preter maintains a second template dispatch table, which stores the associated assembler
templates. The assembler template for wide uses this second table to dispatch to the
template for the following bytecode. The following code shows the content of the wide

assembler code.

wide:

// index contains the opcode, e.g. invokevirtual = 182

index = bytecodepointer[1]

template = wide_table[index]

jump template

During startup the template interpreter gets built by executing functions that generate
the assembler templates into a code buffer. For each bytecode a C++ method is executed
that generates the corresponding machine code. The start address of this machine code
is then stored in the dispatch table. To handle tail calls four methods are added that
generate the tail calling code for the respective invocation bytecode. The start addresses
of the resulting code is stored in the wide dispatch table at the corresponding offset.

4.7.2 Interpreter Execution Environment

The execution environment of an interpreted method consists of the interpreter stack
frame and the content of the machine registers. The interpreter frame consists of:

4 Implementation 50

• Locals and parameters: The interpreter stores parameters and locals in a continu-
ous area at the beginning of the frame. Accessing local variables and parameters
can be handled uniformly without special code. At method entry the slots on the
expression stack holding parameters become part of this area.

• Return address: holds the link to the caller. Contains either an address of the
interpreter or of compiled code.

• Old frame pointer: stores the frame pointer of the caller frame and is saved at
method entry by the interpreter.

• Old stack pointer: contains the real stack pointer of the caller frame. It is saved
at method entry. Adapter code between compiled and interpreted frames creates
an area between the two frames for shuffled parameters. The interpreter removes
this area on exit of a method using this pointer.

• Last stack pointer: stores the value of the stack pointer, i.e. the state of the
operand stack before a method invocation. The interpreter restores this value on
return of a method invocation. This allows the creation of a variable area between
two frames to store shuffled parameters in case of a interpreted to compiled method
transition.

• On stack replacement state: stores a boolean value whether on stack replacement
is allowed for this frame. Added for the tail call implementation to be able to turn
off on stack replacement for certain methods running in the interpreter.

• Monitorblock: contains data structures for locks. Each monitor object uses two
stack slots, where an optional object header word and a pointer to the locked object
can be stored. This is used to implement a thin locking scheme [3, 4]. If only one
thread locks an object, the lock can reside on the thread’s stack frame and can use
cheaper synchronization instructions than when multiple threads use the lock.

• Operand stack: holds the stack the bytecodes operand on.

During execution of a method the interpreter stores the address of the current bytecode
instruction in register esi. ebp is used as frame pointer. To access values stored in the
current stack frame the interpreter uses offsets relative to ebp, e.g. the old stack pointer
is available at address ebp plus 8 (each stack slot has 4 bytes). esp is used as the stack
pointer. Figure 4.8 shows the layout of an interpreter frame.

4.7.3 Interpreter Method Execution

The interpreter progresses by executing assembler templates for each bytecode. In ad-
dition to the normal bytecode templates the interpreter also has several entry points,
which it uses during method execution. The method entry point contains an assembler

4 Implementation 51

Operand stack

Caller

Parameters
and Locals

Return Address
Old frame pointer
Old stack pointer
Last stack pointer

ESP
EBP

ESI

Registers

iload_1
iconst_1
iadd

Method's
bytecode

Operand stack

...

Figure 4.8: Interpreter stack frame layout

template, which sets up the new stack frame and gets executed when the interpreter
enters a method. The return entry point is the continuation point after a method has
returned. It restores the state of the method, i.e. the values of the registers, after a
method call has returned.

To understand how the interpreter works during the execution of a method, it is useful
to split its actions into 5 stages.

• Normal bytecode execution of bytecodes that do not call another method or throw
an exception. The assembler template for the respective bytecode is executed,
manipulating the operand stack or accessing local or object fields.

• Invocation of a method. One of the four invocation bytecodes gets executed.
The interpreter enters the corresponding template. The template stores the state
(bytecode pointer, last stack pointer etc.) to the current stack frame. Next it
pushes the interpreter’s return entry onto the stack and jumps to the entry of the
called method. If the call is a tail call the parameters are moved to the caller’s
caller frame, the return address is adjusted and the current frame is removed.

• Entry of a method. The method entry template gets executed, allocating a new
stack frame. It adds stack slots for local variables and moves the return address
below them. The remaining stack slot values are placed on the stack. After
the stack frame is created, the interpreter jumps to the method’s first bytecode
template.

• Exit of a method. The template of one of the return bytecodes gets executed.
It removes the current stack frame and continues execution at the caller’s return
address.

4 Implementation 52

• Return from a method. The interpreter’s return entry restores the stack pointer
using last stack pointer, removes the parameters from the operand stack and con-
tinues execution at the next bytecode instruction.

Invocation of a method One of the invoke... templates gets executed. The following
pseudo code shows the code contained in an invoke template. In reality functions expand
to multiple assembler statements.

invoke_virtual:

safe_curr_bytecode_pointer();

// Load methodOop, vtable index and flags (contains number of parameters).

load_invoke_cp_cache_entry(methodOop, index, flags);

load_receiver(ecx, esp, flags); // Load the receiver from stack to ecx.

push_return_adress(Interpreter::return_address_entry);

klass = receiver.type;

targetMethodOop = compute_receiver_target(klass, index);

profile_call(targetMethodOop);

safe_last_sp();

ebx = targetMethodOop

jump targetMethodOop.from_interpreted;

The template first safes the current bytecode pointer (bcp) to the stack. Next it loads
the callee’s methodOop, method table index and flags containing the number of param-
eters to registers. This is done by looking at the constant pool index following the
opcode in the bytecode stream. The code uses this index to retrieve an entry containing
methodOop, index and flags from the constant pool cache. If this entry is not initialized,
the interpreter calls into the runtime to update the constant pool cache. This possibly
involves class loading. Following this, the code loads the receiver from the operand stack
to the register ecx because a compiled target expects it there. Then the return address is
pushed onto the top of stack, the call’s target method is computed (dynamic dispatched
via the class’ method table), the invocation count is increased, the last stack pointer
is saved and finally the code continues execution at the target (the from interpreted

entry in the methodOop). The target methodOop is stored in ebx because the interpreted
method entry point expects it there. Figure 4.9 illustrates how the stack changes during
this step when executing the ListElem.accLen method. Only stack slots that change
are drawn.

Static calls invokespecial/invokestatic proceed similar but omit the loading of the
receiver. The computation of the target uses the methodOop directly to get to the
from interpreted entry.

4 Implementation 53

#obj
2

#obj
2

ret_entry

bcp
last_sp

Before
invokevirtual

After invokevirtual
template

Execution stack

0: aload_0
1: getfield ListElem/rest List;
2: iload_1
3: iconst_1
4: iadd
5: invokevirt List/accLen(I)I
6: ireturn

Bytecode ListElem.accLen

Figure 4.9: Execution stack of interpreter at the invocation of a method

Entry of a method The method entry point template in the interpreter is called either
from another interpreted method or from compiled code. The methodOop of the method
to be executed was stored by the caller in ebx. Parameters of the method are on the
top of the stack. The following code shows the content of the assembler template.

method_entry:

pop(return_addr);

extend_params_with_locals();

push(return_addr);

generate_fixed_frame(current_thread_disable_osr()));

bang_shadow_pages();

dispatch_next();

The template first moves the return address from the stack to a register. Then the
parameters are extended by the required space for local variables. After this, the return
address is pushed back to the stack. In the next step the template generates the frame
by:

• Storing the old frame pointer to the stack and setting the new one to the current
stack pointer.

• Storing the old stack pointer to the stack, which is passed in esi.

• Reserving a stack slot for the last stack pointer.

• Saving the method, method data and constant pool cache pointer to the stack.

• Saving the pointer to the start of locals.

• Retrieving the bytecode pointer (address at fixed offset in methodOop) and storing
it to the stack.

• The value of the on stack replacement stack slot is set depending on whether the
caller has passed a flag on the current thread (the JavaThread object) to disable
on stack replacement for this method. This is added to support tail calls.

4 Implementation 54

Then a check is emitted whether the stack overflows. The memory area at the end
of every thread’s execution stack is protected. The interpreter emits an access to the
memory area above the current stack frame. If this access happens in the protected
memory area the operating system signals an exception to the VM. The VM can then
gracefully handle the stack overflow because the error happens at a defined point in the
program. This process is called stack banging. Finally the bytecode pointer is stored
to esi and the first bytecode is dispatched via the template table. Figure 4.10 (a)
shows how the execution stack changes during this phase. It uses the recursive call of
ListElem.accLen as example and only shows the stack slots that are relevant for the
stack frame handling.

#obj
2

ret_entry

#obj
2

 ret_entry
further locals

old fp
old sp

ac
cle

n1 ac
cle

n1
ac

cle
n2

#obj
2

 ret_entry
further locals

old fp
old sp

ac
cle

n1
ac

cle
n2

#obj
2

ac
cle

n1

Before method
entry

After method
entry

Before ireturn After ireturn to
interpret. frame

compiled

ac
cle

n1

After ireturn to
compiled frame

c2i

Result in
rax = 3

3(a) (b)

Figure 4.10: Execution stack during method entry and at the exit of a method

Exit of a method When a method is finished it calls one of the return bytecodes. The
corresponding template gets executed.

ireturn:

safe_result_from_stack_to_register(eax);

movptr(ebx, Address(ebp, frame::interpreter_frame_old_sp_offset); // Get sender sp.

leave(); // Remove frame anchor. esp=ebp; pop(ebp);

pop(ret_addr); // Get return address.

mov(esp, ebx); // Set sp to old sp.

jump ret_addr;

The code first safes the result value from the top of the operand stack to a register.
Next it retrieves the old stack pointer stored in the current frame. Then it removes the
current frame and retrieves the return address in the caller. Finally, it sets the current
stack pointer to the value of the saved old stack pointer and jumps to the return address.
The usage of the old stack pointer allows compiled-to-interpreted adapter code to insert
space between a compiled and an interpreted frame for the shuffled parameters. The

4 Implementation 55

adapter remembers the original stack pointer of the compiled frame in esi and then
puts the shuffled parameters on the stack. On entry the interpreter safes the value of
esi as old stack pointer.

Figure 4.10 (b) shows how the stack changes during this step with two possible return
variants. The first shows the return to an interpreted method. The second shows the
return to a compiled method. By using the old stack pointer, the interpreter guarantees
that the code in the compiled method encounters the correct stack pointer.

Return from a method After a called method returns, execution continues in the return
entry template of the interpreter. It removes the parameters and continues execution at
the next bytecode.

return_entry:

movptr(esp, Address(ebp, frame::interpreter_frame_last_sp_offset));

restore_bcp();

remove_method_parameters();

dispatch_next();

The code first restores the stack pointer (top of operand stack) from the stack slot,
where it was safed before invocation of the method. Then the bytecode pointer is reset
to the state before the call. Next the parameters on the operand stack are removed.
The interpreter uses the constant pool cache to get the number of parameters of the just
invoked method. Finally the next bytecode template is dispatched.

Figure 4.11 demonstrates this step. Notice how a possible interpreter-to-compiled area
is removed using the saved last stack pointer.

#obj
2

ac
cle
n1

i2c

ac
cle
n1

Before return
entry

After return
entry

last_sp

rax=3

3

Figure 4.11: Execution stack at the return entry to the interpreter

Tail call additions To support tail calls we added the different wide invoke... tem-
plates. Those templates contain the same code like normal invocation templates, as well
as code that moves the parameters and removes the current stack frame.

wide_invoke_virtual:

4 Implementation 56

safe_curr_bytecode_pointer();

// Load methodOop, vtable index and flags (contains number of parameters).

load_invoke_cp_cache_entry(methodOop, index, flags);

load_receiver(ecx, esp, flags); // Load the receiver from stack to ecx.

push_return_adress(Interpreter::return_address_entry);

klass = receiver.type;

targetMethodOop = compute_receiver_target(klass, index);

profile_call(targetMethodOop);

if (protection_domain_mismatch()) {

// Regular call or throw exception depending on flag.

regular_call_continuation:

safe_last_sp();

jump targetMethodOop.from_interpreted;

} else {

tail_call();

jump targetMethodOop.from_interpreted;

}

The protection domain mismatch function checks, whether caller and callee protection
domain are equal using the methods’ classes. If they are not, the call is executed like
a normal method call or an exception (TailCallException) is thrown depending on a
flag the VM was started with. The tail call function expands to code that performs
the tail call.

tail_call:

parent_is_not_interpreter_jcc(regular_call_continuation);

safe_return_addr();

safe_old_frame_pointer();

safe_old_stack_pointer();

move_parameters_from_top_of_stack_to_start_of_locals();

store_return_addr_after_moved_parameters();

esi = safed_old_stack_pointer;

ebp = safed_old_frame_pointer;

esp = address_of_stored_return_addr;

parent is not interpreter jcc checks whether the caller of the current frame is in-
terpreted. If it is not interpreted, the call proceeds like a normal call. This is done
because of two reasons. First, the compiled code needs an interpreted frame for certain
types of tail calls. It creates those frames by calling into the interpreter. If the called
method (running in the interpreter) does a tail call that removes the current frame, this
undos the intentions of the compiled code and no interpreted frame is on top of the
execution stack. The second reason has to do with compiled-to-interpreted transitions.
Assume that the current method is called from a compiled method. The current method
is interpreted. Hence there is a compiled-to-interpreted adapter on the stack. The cur-
rent method performs a tail call to a compiled method. Without the check the current

4 Implementation 57

interpreter frame is removed and there is no code executed that removes the adapter
area resulting in wrong stack pointers. Figure 4.12 illustrates the problem.

c2i

compiled
frame

current
interpreted

frame
tail call

c2i

compiled
frame

tail called
compiled

frame

i2c

c2i

compiled
frame

i2ctail called
method
returns

wrong stack
pointer

Figure 4.12: Wrong stack pointer after removal of interpreter frame

After the code has determined to perform a tail call, it safes the return address, old
stack/frame pointer from the current stack frame to the top of the stack. Then it moves
the parameters from the operand stack to beginning of the current interpreter frame
where the local area starts. Next it places the safed return address after the moved
parameters. It sets esi,ebp equal to the old stack and frame pointer. Then it sets the
current stack pointer esp equal to the address of the moved return address slot. The
stack now looks as if the caller’s caller has invoked the called method. Finally, the code
jumps to the target method. Figure 4.13 illustrates how the stack changes during the
execution of the tail call code.

#obj
2

 ret_entry
old fp
old sp

pa
re

nt
ca

lle
r

Before execution
of tail_call

#obj
2

 ret_entry

pa
re

nt
ca

lle
r

parent(){
 caller(#obj, 2)
}

caller(obj,int) {
 tailcall callee(1,2,3)
}

1
2
3

 ret_entry
old fp
old sp

Save values

pa
re

nt
ca

lle
r

 ret_entry

old fp
old sp

Move parameters
and return address

1
2
3

1
2
3

pa
re

nt

 ret_entry

Pop frame

1
2
3

esp
ebp=old fp
esi= old sp

Figure 4.13: The stack changes during an interpreter tail call.

Compiled code sometimes calls a method in interpreted mode to create an interpreted
stack frame. The interpreter might do on stack replacement, if the called method con-
tains a long running loop. To prevent the called method from performing on stack

4 Implementation 58

replacement, the compiled code sets a flag on the current thread to disable on stack
replacement. The method entry of the interpreter stores this fact to the current stack
frame. The assembler template for the branch instruction is modified to include a check
whether on stack replacement is turned off for this frame. This check inspects the value
of the OSR stack slot.

4.8 Compiler

The compiler (client or server) generates code for a whole method. A method call is
viewed as a unit during compilation, i.e. for every invocation a certain combination
of machine instructions is emitted. These instruction only depend on the type of the
method call. The call site can be considered in isolation. A call consists of:

• Lowering of arguments: Compiled methods have a fixed frame size, which includes
outgoing parameters. The compiler emits code that moves the parameters to their
stack slot in the current frame’s outgoing parameter area.

• Actual call site: The call site sets possible tokens (security, class) and performs
the call to a target.

Figure 4.14 shows how a method invocation is treated as a unit during compilation by
the client compiler.

Add

Invokevirt "accLen"

Return

...
add [R44] [int:1] [R44]
move [R44] [edx]
move [R43] [ecx]
icvirtual call: [addr: 0x0]
move [eax] [R45]
move [R45] [eax]
return [eax]

...
mov %rax expectedClass
call target

HIR LIR Generated code

Figure 4.14: A method invocation is treated as a unit during compilation.

The tail call implementation uses the same form for a tail calling method invocation.
Only the actual target of the call is different.

4.8.1 Sibling and Non-Sibling Tail Calls

A tail call might be calling from a method with few parameters to a method with many
parameters. Because the parameters are moved onto the caller’s caller frame, the tail
call needs to make sure that there is enough space. If a tail call happens from a method

4 Implementation 59

that requires n stack slots for its parameters to a method that needs ≤ n stack slots, we
can be sure that there is enough space in the caller’s caller because it was reserved when
calling the caller. Because stack frames have a fixed size, if the callee requires more than
n stack slots, we cannot move the parameters to the caller’s caller frame. Figure 4.15
shows the problem. Method invocations that require ≤ n stack slots are called sibling
tail calls, invocations that need ≥ n stack slots are referred to as non-sibling tail calls.

compiled

2
1ca

lle
r's

 c
al

le
r

compiled

2
1

ca
lle

r(1
,2

)

outgoing
parameter
area

Sibling tail call

compiled

ca
lle

r's
 c

al
le

r

compiled

2
1

ca
lle

r(1
,2

)

outgoing
parameter
area

Not sibling tail call

3

?

tailcall callee(1,2)
tailcall callee(1,2,3)

Figure 4.15: Sibling and non-sibling tail calls

This problem can be solved in two ways:

• Making the stack frame size variable.

• Insert an adapter frame that has variable size.

To make a compiled stack frame variable in size, every access to a value in the stack
frame has to use the frame pointer. This means that the frame pointer is reserved for
this purpose. The assumption that the size of compiled stack frames is constant is spread
around the code in the whole VM (e.g. stack walking, oop maps and debugging informa-
tion use the stack pointer to refer to locations in the stack frame, server compiler does
not use/set the value of the frame pointer). Making the stack frame size variable means
changing many different components of the VM. It also negatively effects performance
of methods in the server compiler, which uses the frame pointer as normal assignable
register during register allocation.

Therefore the compiler uses the second method. The compiler differentiates between
sibling and non-sibling calls. A sibling tail call jumps to a method entry that moves
the arguments onto the caller. A non-sibling tail call method entry checks if the parent
(caller’s caller) frame is extendable, i.e. an interpreted frame. An interpreted frame
is extendable because it restores its stack pointer from the last stack pointer slot. If
the parent is extendable, the non-sibling tail call method entry can extend the frame

4 Implementation 60

and move the parameters onto it. If the parent is not interpreted, the method entry
starts execution of the called method in the interpreter. This creates an interpreted and
extendable frame on the stack. If this is a series of tail calls the next tail call has a
parent frame that is interpreted. Figure 4.16 illustrates the two possibilities.

interpreter

ca
lle

r's
 c

al
le

r

compiled

2
1

ca
lle

r(1
,2

)

outgoing
parameter
area

Not sibling tail call
(parent interpreted)

3

tailcall callee(1,2,3)

last sp

compiled

ca
lle

r's
 c

al
le

r

compiled

2
1

ca
lle

r(1
,2

)

Not sibling tail call
(parent compiled)

3

interpreter

compiled

tailcall callee(1,2,3)

tailcall

Figure 4.16: Handling of non-sibling tail calls

This method incurs some overhead for non-sibling calls because the program executes in
the interpreter for one method execution. To prevent this from happening, the modified
JVM features a flag MinOutgoingArgsSlotSize with which the user can set the mini-
mum stack slot size for the outgoing area of every method. Every method allocates this
many outgoing stack slots. Hence every call that requires less or equal many stack slots
for parameters is a sibling tail call and does not incur any overhead.

4.8.2 Call Sites in Compiled Code

The call site generated by the compiler, provided it did not inline the call, can have two
forms:

• Static or optimized virtual calls: The compiler knows that there is only one possible
target of the call. invokestatic and invokespecial always have a known target
method. If the compiler can determine during compilation that a virtual method
call can only have one target, it also emits a static call.

• Virtual call: There might be multiple different targets depending on the receiver
type. The compiler emits code that can handle them.

4 Implementation 61

Figure 4.17 shows a high-level overview how the compiler generates the call site depend-
ing on the invocation type and the possible receiver types.

invokestatic

invokeinterface

invokevirtual

invokespecial
Compilation

Static / optimized
virtual call site

 Virtual call siteCompilation
Unique
receiver

type

CHA Analysis

yes

no

Figure 4.17: The compiler generates call sites depending on the possible receiver types

Static and Optimized Virtual Calls

A static or optimized virtual call is emitted, if the call target, i.e. the methodOop of the
call, is known to be unique. The following assembler code is emitted.

call resolve_static_call_runtime_entry

The call goes to a runtime entry that patches the call with the appropriate target, the
first time the call site is executed. The patched target is the address stored in the
from compiled entry in the methodOop. Depending on whether the method is compiled
at the time of patching, this entry either contains the verified entry point of the compiled
method or the address of a compiled-to-interpreted adapter.

Depending on the current target, the call site can be assigned a state. This state can
change during execution of the program because a method is compiled or recompiled.
Figure 4.18 shows the different possible states.

When a method is compiled the call sites’ target addresses point into the runtime. The
first time the call site gets executed the runtime replaces the target address of the call
with the address of the called method. The runtime uses the methodOop to determine the
target of the call. If the compiler has already compiled the method the from compiled

contains the verified entry point of the compiled method.

call methodOop.VEP

If there is no compiled code the runtime from compiled entry contains a compiled-to-
interpreted adapter, which shuffles the arguments and continues execution in the inter-

4 Implementation 62

To compiled To interpreted

To runtime
compiled
code

nonentrant
method

no compiled
code

compiled
code

Compiler

normal call
sibling tail call

non-sibling tail call

Figure 4.18: The different states of a static call site

preter. Because the compiled-to-interpreted adapter expects the methodOop in register
ebx, the runtime does not patch the address of the adapter but instead uses the address
of a stub that is generated for every call that sets the value in ebx first before jumping
to the adapter.

call to_interpreter_stub

...

to_interpreter_stub:

mov %ebx methodOop

jmp c2i_adapter

It is possible that a method is compiled, after the runtime has set the target of that
method to interpreted state. Therefore the interpreter adapter checks whether the called
method is compiled, before it continues running the method in interpreted mode. If there
is compiled code, it fixes the call site, so that the next time the call site is invoked, it
goes to the compiled code.

The compiler may recompile methods. This makes the old version of the compiled
method invalid. The compiler marks the old methods as non-entrant by patching the
entry points of the methods with code that goes into the runtime. Compiled call sites
still point to those entry points. The next time the compiled call site executes, it arrives
at the patched entry point. Execution continues in the runtime. The runtime fixes the
target of the call site to point to the runtime entry responsible for resolving the call site
and continues execution in the new method.

To handle tail calls, conceptually another dimension is introduced. A call can either be
a normal call, a sibling tail call or a non-sibling tail call. We can imagine that for the tail

4 Implementation 63

calls two more layers containing the same states are introduced as show in Figure 4.18.
Depending on the type of call: normal call, sibling tail call or non-sibling tail call we
are in one of the three layers. The transitions stay the same but can only happen in one
layer. The layers are reflected in the VM by different entry points. The compiler emits
the initial runtime entry, which either points to the function resolve static call,
resolve static tail call or resolve not sibling static tail call depending on
the type of call. These functions use the respective method entry from compiled,
from compiled tail call and from compiled no sibling tail call to patch the call
site.

The protection domain check happens during the execution of resolve static tail call.
If caller’s and callee’s protection domain mismatch, the call is not patched to go to the en-
try that removes the frame from compiled tail call but instead to the normal method
entry from compiled. Because protection domains are only set during class loading and
not modified thereafter, it is sufficient to check the correspondence once during resolving
the call target.

Virtual Calls

If the compiler can not determine that there is only one possible receiver type, e.g.
if both a class and a subclass implement a method or an interface is implemented by
several classes, it emits a virtual call site. The call site can handle monomorphic as well
as polymorphic calls.

move %eax NULL // Class token for monomorphic call.

move [esp+0] NULL // Security token for polymorphic calls

call resolve_virtual_call

Figure 4.19 shows the different states a virtual call site can be depending on the target
of the call.

Initially the compiler emits code that calls into the runtime. When the call site is called
for the first time the program continues its execution in the respective runtime resolve
function. This function sets the state of the call site to compiled monomorphic by setting
the class token to the current receiver’s class and by patching the call target to be the
unverified (class check) entry point of the receiver method.

move %eax instanceKlassOop // Class token for monomorphic call.

move [esp+0] NULL // Security token for polymorphic calls

call unverified_entry_point

4 Implementation 64

To compiled
(monomorphic)

To interpreted
(monomorphic)

To runtimecompiled
code

no compiled
code

Compiler

normal call
sibling tail call

non-sibling tail call

Polymorphic
inline cache
miss

compiled
code

inline cache
miss

Figure 4.19: The different states of a virtual call site.

If the receiver’s method is not compiled, the runtime sets the class token to a
compiledICHolderOop. This data structure stores the expected class and the methodOop
of the receiver method. The target of the call is set to a special compiled-to-interpreted
adapter entry.

move %eax compiledICHolderOop // Class token for monomorphic call.

move [esp+0] NULL // Security token for polymorphic calls

call c2i_unverified_entry_point

This entry uses the information in the compiledICHolderOop to check whether the
actual receiver type matches the expected one and continues execution in the interpreter
using the methodOop. The code in the adapter also checks, if a compiled version of the
receiver method exists and calls into the runtime to fix the call site if it does.

If the inline cache check fails at the unverified entry point of a compiled method or in the
adapter control transfers into the runtime. The runtime than patches the target of the
call site to go to a stub that does the dynamic dispatching. The move %eax instruction
is updated so it contains the instanceKlassOop of the interface if the call is an interface
call or NULL if the call is a virtual call.

move %eax instanceKlassOop // EITHER:Class of interface for interface calls.

move %eax NULL // OR: Call is a invokevirtual.

move [esp+0] protection_domain // Security token for polymorphic calls

call dynamic_dispatch_stub

To support tail calls we introduce another dimension. A virtual call can be either a
normal, sibling or non-sibling tail call. This is reflected in code by different entry points.
For every normal call entry point there exists a sibling and non-sibling tail call version.
The protection domain check for monomorphic call sites happens once, when the runtime

4 Implementation 65

patches the call site. Because monomorphic calls only have one possible receiver type
this is sufficient. The dynamic dispatch stubs for tail calls are extended to include a
protection domain check. Every time the dispatch code is entered it checks whether the
protection domain of the caller (which was set at the call site, see code above) matches
the protection domain of the receiver type. If this check fails, the code jumps to the
normal method entry else it jumps to a tail call method entry.

Relocation Information

Compiled code may contain object pointers (oops) to runtime objects. When garbage
collection happens the collector needs to know the location of those pointers. Generated
code might move and targets of jumps and calls have to be updated. The runtime needs
to know the type of a call during patching. To support those operations the compiler
maintains relocation information objects, which are stored together with the compiled
code in the nmethod object. These objects conceptually point to an address in compiled
code and associate meta information with it. There are several types depending on the
information they should convey. The following listing contains types that are relevant
for this work.

• Oop type: The address pointed to is an object pointer. A virtual call site contains
such a relocation info for the class pointer.

• Virtual call type: It marks a virtual call site.

• Optimized virtual call type: It marks an optimized virtual call site.

• Static call type: It marks a static call site.

To support the differentiation of the call site, a sub type that specifies the kind of call is
added. The relocation information for calls contains an extra field that specifies whether
a call is a normal call, sibling tail call or a non-sibling tail call. Figure 4.20 shows the
relocation information generated by the compiler at a virtual tail call site.

Non-entrant Methods

If the compiled code of a method becomes invalid a method might be recompiled or has
to be executed by the interpreter. The code becomes invalid, if it contains an optimized
virtual call and loading of a new class invalidates the assumption that this call only has
one receiver type. Static call sites in other methods might still point to the code of the
old method. To prevent such call sites from entering the wrong code, invalid methods
are marked as non-entrant. The runtime patches the first instructions of the different

4 Implementation 66

...
move %eax instanceKlassOop
move [esp+0] NULL
call tail_call_unverf_entry_point
...

virtual_call_type

oop_type

sibling_tail_call

Code:

Relocation information

nmethod

oop_type

Figure 4.20: Relocation information of a virtual tail call site

entry points to the old method with calls back into the runtime. The target of that
call is the runtime method handle wrong method. This method fixes the target of the
static call site to a runtime entry that resolves the call. The next time the static call
site is executed the target is fixed to point to the appropriate method entry of the new
method. Figure 4.21 illustrates this process.

...
call verified_entry_point
...

Code:
caller nmethod

verfied entry point:
 ...

Code:
callee nmethod

verfied entry point:
 call reresolve_method

Code:
callee nmethod

verfied entry point:
 ...

Code:
new callee nmethod

verfied entry point:
 call reresolve_method

Code:
callee nmethod

verfied entry point:
 ...

Code:
new callee nmethod

Class
loading

reresolve_
method

causes creationpatches
2

1

3

4

Figure 4.21: Marking methods non-entrant causes static calls to be re-resolved.

To support tail calls the tail call entry points also have to be marked as non-entrant if
a method becomes invalid.

4 Implementation 67

4.8.3 Resolving a Call

When the compiler emits code for a call, the target of the call points to one of the
resolving methods.

• resolve static call, resolve optimized virtual call: The runtime entry re-
solves the call target to point either to the callee method’s verified entry or to the
method’s compiled-to-interpreted adapter (via the to-interpreter stub).

• resolve virtual call: Resolves the call target to the unverified entry points and
sets the class token.

To support tail calls, versions for sibling and non-sibling tail calls are added, e.g. there
is a resolve static tail call and a resolve static not sibling tail call. All
these entry functions call the function resolve sub helper, which implements their
behaviour. The parameters to the function indicate the type of the call. We modified
the function to perform the following two steps.

• Protection domain check. This step only happens if the call is a tail call. The
runtime compares the protection domain of the caller with the protection domain
of the callee. The protection domain is stored in the instanceKlassOops, which
hold the respective methods. If the protection domains are not equal, the runtime
either throws an exception or the following call site patching patches the call to a
normal call entry instead of to a tail call entry.

• Compute the method entry. The runtime computes the entry point in the method,
which is stored in either the methodOop or in the corresponding nmethod if the
callee is already compiled. The resulting entry point depends on whether the call
is static, optimized virtual or virtual and on whether the target method is compiled
or not. With the introduction of tail calls, the call sub type also needs to be taken
into account. The following table shows which entry is received in this step.

Normal call Sibling tail call Non-sibling tail call

Static call site

Callee is

interpreted c2i entry c2i tail call entry c2i not sib tail call entry

compiled verified entry verified tail call entry verified not sib tail call entry

Virtual call site

Callee is

compiled unverified entry unverif tail call entry unverif not sib tail call entry

interpreted c2i unverified entry c2i unverif tail call entry c2i unverif not sib tail call entry

4 Implementation 68

4.8.4 Dispatch Stubs

The VM supports virtual calls through the use of dynamic dispatch stubs. When a call
site is set to polymorphic state, the address of the call is set to such a stub. For tail
calls a protection domain check is introduced.

dispatch_stub:

target = ... // Interface or vtable lookup.

method_entry_offset = from_compiled_tail_call_offset();

if (callerClass.protection_domain != target.method_holder.protection_domain)

throw TailCallException; // OR:

method_entry_offset = from_compiled_offset();

jump target[method_entry_offset];

Depending on the kind of the call, i.e. normal call, sibling tail call or non-sibling tail
call, the dispatch stub jumps to the

• from compiled

• from compiled tail call

• from compiled not sibling tail call

entry point in the methodOop.

4.8.5 Frame Layout and Calling Convention

Every time a method is called, a stack frame is allocated on the execution stack. Stack
frames of compiled methods have a different layout than their interpreted counter parts.
A compiled stack frame is more compact. It contains the following stack slots:

• Return address: The address in the caller method where to resume execution if
the current method returns.

• Dynamic link: Normally contains the caller’s frame pointer. The server compiler
uses the frame pointer register as a regularly assignable register.

• Monitor area: The data structure used for locking objects is stored here. The size
depends on the number of locked objects. For every locked object there is an entry
of two words containing the object’s address and header word.

• Spill area: The area where the register allocator temporarily stores registers, if an
operation requires more registers than are currently available.

• Outgoing parameter area: The compiler reserves an area at the end of a frame,
which is large enough to hold the parameters for any of the called methods.

4 Implementation 69

When a method is called, not all parameters are passed on the stack. The compiler uses
register ecx and edx to pass integers or object pointers. If the method call is virtual, ecx
contains the address of the receiver object. For floating point values register xmm0 and
xmm1 are used. If the method has more parameters than fit in aforementioned registers,
they are passed on the stack. To support passing of the protection domain token the
first parameter slot is reserved. The method that computes the location of parameters
is modified so it assigns real parameters above the reserved stack slot. Figure 4.22 shows
the layout of a compiled stack frame.

Caller

Return Address
Dynamic Link

Spill Area

Outgoing
Parameters

Monitor Area

Compiler stack layout

Protection Domain ESP

EBP or ESP-stack frame size (server compiler)

Figure 4.22: Stack frame layout of compiled frames

Tail call entry points need the size of the tail calling frame in order to be able to remove
it. Code compiled by the client compiler always uses the register ebp to hold the current
frame pointer. When a tail call entry point is entered, the code can use the value in
ebp to remove the calling frame. The server compiler uses ebp as a normally assignable
register and it assumes that a method call does not destroy its contents, i.e. the callee
safes the content on entry and restores it on return. Another register has to be used to
indicate the extent of the calling frame. The call site code of tail calls, emitted by the
server compiler, stores the value of the stack pointer esp minus the frame size in esi.
The server compiler’s tail call entry points use this value to remove the frame.

4.8.6 Method Entry Points

A virtual call site can be in monomorphic state, which requires a check in the method
entry of the callee. Tail calls need to move arguments and remove the caller frame at
method entry. The VM supports this by having different entry points to a compiled
method. The entry point’s addresses are stored in the nmethod object together with the
method’s code. The following is a listing of all entry points together with the code that
is executed, when the entry point is entered.

4 Implementation 70

• Verified entry point: The verified entry point corresponds to a normal method
entry. At first the code writes to memory area below the current stack pointer.
The memory at the end of every threads execution stack is write protected. If
a stack overflow occurs, the instruction fails and a signal is sent to the VM by
the operating system. Execution continues in the VM’s runtime, which throws a
StackOverflow exception. Next the code safes the old frame pointer, sets the new
frame pointer and creates the new stack frame. At this point the frame setup is
complete. The address at this point is stored, so that code generation can refer to
it. Finally, execution continues with the method’s code.

VEP:

mov [%esp - bang_offset] %eax // Check whether the stack overflows.

push %ebp // Safe the frame pointer.

mov %ebp %esp // Set new frame pointer (only in client compiler)

sub %esp new_frame_size // Create new frame.

frame_complete_label:

• Unverified entry point: This entry supports monomorphic calls. An inline cache
check is performed before execution continues at the verified entry point. If the
check fails because the expected class does not match the receiver’s class, the
program continues in the runtime.

UEP:

// Eax contains expected class. Ecx the receiver.

cmp %eax [%ecx + oop::class_pointer_offset]

jne handle_wrong_method_ic_miss

VEP:

... // continue at verified entry point

• Verified tail call entry point: This is the target of sibling tail calls. The code
moves the arguments from the outgoing parameter area of the caller (esp to
esp+parameter size) to the outgoing parameter area of the caller’s caller. The
outgoing parameter area of the caller’s caller starts two stack slots above ebp or
esi if the server compiler is used.

VEP_tailcall:

for (param = 1.. number of parameters)

mov %ebx [%esp + (param)*wordSize]

mov [%ebp + (param+1)*wordSize] %rbx

leal %esp [%ebp - framesize] // Compute the new stack frame.

jmp frame_complete_label

Then it removes the caller’s frame and creates the new frame by setting the stack
pointer esp to the value of the caller’s frame pointer ebp/esi minus the new frame
size. Finally, the code jumps to the point, where the frame setup is completed in
the verified entry point. This is the beginning of the method’s actual code.

• Unverified tail call entry point: The code starts with an inline cache check. Then
performs the same actions as the verified tail call entry point.

4 Implementation 71

• Verified non-sibling tail call entry point: The code first checks whether the caller’s
caller frame is an interpreted frame. The code of the interpreter is emitted in a
sequential memory area. The return address is inspected, whether it lies within
this area.

UEP_tailcall:

mov %ebx [%ebp +wordSize] // Return address

cmp %ebx address_interpreter_start

jl not_interpreter_continuation // Continue if addr is above lower bound.

cmp %ebx address_interpreter_end

jg not_interpreter_continuation // Continue if addr is below upper bound.

If the check succeeds, the code moves the parameters to the end of the interpreted
stack frame. It uses the interpreter’s last stack pointer stack slot entry to determine
the destination of the arguments. Because the stack slots containing the interpreter
frame’s return address and frame pointer is overwritten by the argument moving,
those two values are stored to the top of the stack. After the arguments are moved
the two values are restored from there.

safe_ret_addr_and_old_frame_pointer(); // Argument move will write to stack slots.

mov %eax [%ebp] // Get frame pointer of caller’s caller (the interpreted frame).

mov %ebx [%eax + last_stack_pointer_offset] // Get the last stack pointer.

// Copy arguments starting with the lowest argument on the stack.

for (int src_slot = arg_slots, dest_slot=-1; src_slot > 0; src_slot--, dest_slot--)

// Saved old_ebp, old_retaddr on top of stack hence +2.

mov %eax, [%esp + wordSize*(2+src_slot)]

mov [%ebx + (wordSize*dest_slot)] %eax

Move return address to new place below move arguments.

Restore the safed old frame pointer in %ebp.

jmp verified_entry_point

Figure 4.23 illustrates what happens during the argument move. The interpreter
frame is extended. Because the interpreter restores the top of the operand stack
using the last stack pointer on return to the method, this extension is legal. After
the arguments are moved and the frame pointer restored the code continues at
the verified entry point. If the parent frame is not interpreted the code continues
execution of the called method in the interpreter. The caller frame is not removed.

not_interpreter_continuation:

mov %ebx methodOop // The interpreter expects the current method in %ebx.

jmp c2i_adapter_entry // Continue execution in the interpreter.

In a series of tail calls the subsequent calls have a parent frame that is interpreted.

• Unverified non-sibling tail call entry point: The code starts with an inline cache
check. Then it performs the same actions as the verified non-sibling tail call entry
point.

4 Implementation 72

The server compiler generates slightly different code for tail calls. The call site in server
compiled code stores the caller’s frame pointer in register esi. Instructions that use the
caller’s frame pointer use this register instead of ebp.

ret addr

last_sp

dyn link

1
2
3

in
te

rp
. f

ra
m

e
ca

lle
r f

ra
m

e

ret addr

ret addr

last_sp

dyn link

1
2
3

in
te

rp
. f

ra
m

e
ca

lle
r f

ra
m

e

ret addr
ret addr
dyn link

last_sp

1
2
3

in
te

rp
. f

ra
m

e
ca

lle
r f

ra
m

e

ret addr
ret addr
dyn link

ret addr

last_sp

1
2
3in

te
rp

. f
ra

m
e

ret addr

EBP

Not sibling tail call method entry

State at beginning
of entry.

Store return address
and dynamic link.

Move parameters and
return address.

Remove caller frame
and set base pointer.

Figure 4.23: State of the stack during a non-sibling tail call (caller’s caller is interpreted)

4.8.7 Compiled to Interpreted Transitions

Interpreted and compiled code uses the same execution stack. Because interpreted frames
have a different argument layout than compiled frames, whenever a transition from one
to the other happens, the parameters on the stack have to be rearranged. The VM uses
special adapter code to do the shuffling. The code is stored in an instance of the class
AdapterHandlerEntry.

Every methodOop has a pointer to an AdapterHandlerEntry object, which contains the
code for shuffling the methods arguments. The methodOops entry point from interpreted

or from compiled points to an entry point in the adapter, depending on whether the
method is compiled or not. Adapters are shared among many methods. If two methods
have the same type signature for their arguments, they share the same adapter object,
e.g. the static method int a(int, int) and the static method float b(int, int).

Adapters create an area on top of the current stack frame, where they move the re-
arranged arguments. They are called instead of directly calling the interpreter or a
compiled method. There are two kinds of adapters corresponding to the direction of the
transition.

4 Implementation 73

• Interpreted-to-compiled (i2c) adapter: The code in the adapter rearranges the
arguments according to the compiled calling convention, e.g. the first two integer
or object arguments are moved to the registers ecx and edx. Then it continues at
execution at the method verified entry point. On return, the interpreter frame that
called the adapter, restores its stack pointer using the last stack pointer slot value.
Hence the area created for the arguments is removed. Figure 4.24 (a) illustrates
the execution stack during the transition. The adapter area is drawn in grey.

• Compiled-to-interpreted (c2i) adapter: The code in the adapter rearranges the
arguments according to the interpreted calling convention, i.e. arguments that
reside in registers are put onto the stack. Before the area for the arguments is
created, the code stores the original stack pointer in register esi. The interpreter
saves this value on entry of a method as old stack pointer. When the interpreted
frame returns, it uses the old stack pointer to remove the extra parameter area.
The compiled frame sees the correct stack pointer. After the adapter has moved the
arguments, it jumps to the method’s interpreter entry. Figure 4.24 (b) illustrates
the execution stack during the transition.

#obj

2
3

ret_entry

in
te

rp
re

te
d

Interpreted-to-Compiled
transition

3
rcx=#obj
rdx=1

#obj
1
2

last_sp

compiled

ret_entry

1

3

2

3
2co

m
pi

le
d

ret address

rcx=#obj
rdx=1

3
2

ret address
3
2
1

#obj

old sp

interpreted

Compiled-to-Interpreted
transition

(a) (b)

Figure 4.24: Interpreted-to-compiled and compiled-to-interpreted transitions

An AdapterHandlerEntry has several entry points. There is one entry point that holds
the i2c adapter. A method invocation in the interpreter always computes the correct
target of the call. The target’s methodOop is stored in register ebx when the interpreter
executes the template for the invocation. The i2c adapter code can always assume that
the methodOop is correct. If a method invocation is a tail call, the interpreter removes
the caller frame before continuing at the target method. Hence there is only one i2c
adapter needed. Compiled call sites that are in monomorphic state make an assumption
about the target methodOop, which has to be checked before entering the interpreter.

4 Implementation 74

For static or polymorphic call sites this check is not necessary. Tail calling method
invocations in compiled code remove the calling frame at the callee’s method entry, c2i
adapters need to duplicate this behaviour before entering the interpreter. Hence every
method has multiple c2i adapter entries.

• C2i entry point: This entry is called either from a static call site or from a poly-
morphic virtual call site. The methodOop that the call site stored in ebx can be
assumed to be correct. The code in the entry point performs the following steps.

– Patch caller’s call site: Static call sites might still target interpreted code,
although there is compiled version. The adapter checks whether there is
compiled code. If a compiled version exists, the code calls the runtime to
patch the call site to point to the method’s verified entry point.

– Create adapter area: The code creates an area on top of the stack to hold the
parameters according to the interpreted convention and moves the arguments
there. The return address on the stack is moved below the newly created
area. The code passes the original compiled frame’s stack pointer in register
esi to the interpreter.

– Jump to callee in interpreted mode: The adapter continues execution at the
methodOop’s interpreter entry (from interpreted).

• C2i unverified entry point: This entry is called from a monomorphic call site. The
call site has stored a compiledICHolderOop in eax. It contains the expected
receiver class and the callee methodOop. Before continuing in the interpreter the
code needs to check that the actual receiver type matches the expected. The code
performs the following steps.

– Inline cache check: The code checks, whether the expected receiver class in the
compiledICHolderOop matches the current receiver’s class. If the check fails,
program execution continues in the runtime’s handle wrong method ic miss.

– Patch caller’s call site: If there is a compiled version of the callee available,
the call site is reset to point to the runtime’s resolve method. The next time
the call site gets executed, the resolve routine patches the call site to go to
the compiled method’s unverified entry point.

– Create adapter area: The arguments are moved and the original stack pointer
is saved.

– Jump to callee in interpreted mode.

• C2i tail call entry point: This entry is called from either a static or polymorphic
virtual call site that performs a sibling tail call. The methodOop passed in ebx

contains the correct callee target. The code performs the following steps.

4 Implementation 75

– Patch caller’s call site: If there is a compiled version of the called method, the
entry point patches the static call site with the verified tail call entry point
of the callee’s method.

– Move arguments onto caller’s caller frame. Because the call is a sibling call,
there is enough space in the caller’s caller (caller’s incoming parameter area).
The code that performs the move is similar to the code at the method’s tail
call entry point, i.e. parameters are moved onto the caller’s caller using the
caller’s frame pointer (see Section 4.8.6). If the caller’s caller is interpreted,
the arguments are moved to the interpreted-to-compiled argument adapter
area.

– Remove the caller frame.

– Create adapter area on top of the stack (now the caller’s caller) and move
arguments according to the interpreted parameter passing convention.

– Jump to callee in interpreted mode.

Figure 4.25 shows how the execution stack changes when executing this adapter.

compiled

ca
lle

r's
 c

al
le

r

compiled

ca
lle

r

2
1

About to tail call.

compiled

ca
lle

r's
 c

al
le

r

compiled

ca
lle

r

2
1

Move arguments
onto parent.

compiled

ca
lle

r's
 c

al
le

r

c2i area

2
1

compiled

ca
lle

r's
 c

al
le

r

c2i area

2
1

callee
(interpreter)

The caller's frame
is removed. C2i area
created.

Execution in interpreter
continues.

Figure 4.25: Stack during execution of the c2i tail call adapter runs

• C2i unverified tail call entry point: This entry is called from a monomorphic call
site that performs a sibling tail call. The expected and actual receiver types have
to be checked, before the caller frame is removed. The code performs the following
steps.

– Inline cache check.

– Patch caller’s call site if a compiled version of the callee exists.

– Continue at c2i tail call entry point after the patching instructions.

• C2i not sibling tail call entry point: This entry is called from a static or polymor-
phic virtual call site that performs a non-sibling tail call. Because the tail call is
not a sibling tail call, it is not guaranteed that the caller’s caller frame has enough

4 Implementation 76

room for the parameters. Similar to the method’s non-sibling entry points the
caller’s caller frame has to be an interpreted frame, so it can be extended to hold
the parameters. The code performs the following steps.

– Patch caller’s call site. The static call site is patched with the verified non-
sibling tail call entry point if compiled code exists.

– Check if caller’s caller (parent) is interpreted. If it is, the arguments can be
moved to the extended stack frame using the parent’s last stack pointer. The
code is similar to the code in the method’s non-sibling tail call entry (see
Section 4.8.6). If the parent frame is not interpreted the code continues at
the c2i entry point. The caller frame is not removed. In a series of tail calls
the next tail call therefore has an interpreted parent frame.

– Create adapter area (now on top of the caller’s caller) and move arguments.

– Jump to callee interpreted mode.

• C2i unverified not sibling tail call entry point: This entry is called from a monomor-
phic call site that performs a non-sibling tail call. The expected and actual receiver
types have to match, before execution continues performing the tail call. The fol-
lowing steps are performed.

– Inline cache check.

– Continue at the c2i not sibling tail call entry after the patching instructions.

4.8.8 Client Compiler

We modified the client compiler, so that it emits call sites that point to the corre-
sponding resolve runtime method, e.g. if it is a static sibling tail call, the site calls to
resolve static tail call. Therefore changes in the HIR and LIR invocation instruc-
tion handling are necessary. To support tail calls a compiled method has additional entry
points that perform the argument shifting and removal of the caller frame. The code
of those entry points is stored at the end of the compiled method after the exception
handler code stubs.

HIR

The HIR represents a method invocation instruction by an instance of the class Invoke.
It stores the bytecode, the instruction computing the receiver, the instructions computing
the arguments, the signature, a vtable index and a pointer to an object that represents
the target method. Every HIR instruction is a subclass of the Instruction class, which
contains among other things an integer value that stores a set of flags. To support

4 Implementation 77

marking a call as tail call a TailCallFlag is added. The constructor of Invoke sets this
flag, if the call is a tail call.

The HIR is built by abstract interpretation over the bytecodes. The GraphBuilder

maintains a data structure ValueStack, which simulates the state of the current operand
stack, the locals and monitors. It builds HIR by iterating over the instructions in a basic
block manipulating the ValueStack object. An instruction that puts a value on the
operand stack, e.g. iconst 1 causes that a corresponding HIR instruction is pushed on
the operand stack in the ValueStack object. An instruction that uses operands from
the operand stack as inputs gets them from the ValueStack object’s operand stack.
Thereby instructions are linked together.

iterate over bytecode in basicblock:

switch(bytecode) {

case iconst_1 : valuestack.operandstack.ipush(new Constant(1))); break;

case iadd: : result = new ArithmeticOp(add, vs.operandstack.ipop(),

vs.operandstack.ipop());

valuestack.operandstack.ipush(result); break;

}

If one of the invocation bytecodes is encountered, the GraphBuilder calls its invoke

method. This method performs the following steps.

• Check for monomorphic target: If the call is a virtual or interface call, the compiler
analyses the receiver type and the target method to check, whether the target can
be statically bound. The target can be statically bound, if one of the following
conditions hold.

– Receiver type is final. Hence there can be no actual receiver type that is a
subtype of it and overrides a method.

– Target method is declared as final and hence no sub class can override it.

– Receiver class is a leaf class. The compiler calls the runtime to perform class
hierarchy analysis. If the receiver class is a leaf class, this fact is recorded
as a dependency of the current (caller) method. During class loading these
dependencies are checked. Since there is only one possible actual receiver
type, the call can be treated as static.

– Target method has only one implementor. Again, this is determined through
class hierarchy analysis and a dependency is recorded.

If the compiler has determined that a virtual call can be statically bound, it changes
the bytecode it passes to the Invoke object to invokespecial.

• Try inline call. If the call is identified as having a monomorphic target in the
previous step, the compiler tries to inline the body of the called method. To
test whether inlining may take place, the compiler checks several conditions, e.g.

4 Implementation 78

whether the maximum inline depth is reached. A method that is inlined and
contains a tail call may prematurely exit the method in which it is inlined. Figure
4.26 illustrates the problem. If the code of the callee is inlined in the caller, the tail
call exits the caller, before the method b gets executed. Hence inlining is disabled
for methods that contain a tail call. If the call is itself a tail call, it is guaranteed

caller() {
 a()
 callee()
 b()
}

callee() {
 tailcall c()
}

caller() {
 a()
 tailcall c()
 b()
}

Normal methods Inlined callee

Figure 4.26: A method containing a tail call can’t be inlined

that no code executes after the call returns, i.e. it is guaranteed that there is no
method b. In this cases inlining can and is performed, even if the called method
contains a tail call.

• Create an Invoke object if inlining has failed and append it to the instructions in
the current basic block.

LIR

After the construction of the HIR is finished, the compiler creates the LIR, replacing
each HIR instruction by possibly a couple of LIR operations. All LIR operations are
instance of a subclass of LIR Op and have at least a code that represents the kind of
operation and a result operand. Operands can be of different type. There are virtual
register, fixed register, stack slot, constant and address operands.

The LIR represents a method invocation by an instance of the class LIR OpJavaCall.
This object holds a pointer to the target method, the receiver operand, the address of the
call, the result operand, the parameter operands and a pointer to a CodeEmitInfo object.
The data contained within the CodeEmitInfo object is used for safepoint information
generation. To support tail call generation a boolean flag is added that indicates, whether
a call is a tail call.

The LIR Generator object has one method per HIR instruction, which implements the
traversal of this instruction. The method handling an Invoke instruction is called
do invoke and is modified to handle tail calls. The method performs the following
steps.

4 Implementation 79

• Visit the arguments. This step traverses the input arguments of the invocation,
thereby building LIR operands containing the result of recursively generating LIR
code for the parameter HIR subtrees.

• Compute CodeEmitInfo: The safepoint information is calculated, i.e. the current
bytecode index and the state of local variables, operand stack and monitors.

• Load arguments. The arguments are moved to locations on the stack or in registers
according to the calling convention. The corresponding lir move operations are
emitted.

• Create the call site. Depending on the bytecode of the Invoke instruction the
corresponding LIR OpJavaCall object is emitted. If a call is a tail call, the initial
target address points to a different runtime resolve method and the tail call flag is
set to true on that object.

After the LIR is generated, a linear scan register allocator runs assigning real registers to
the virtual registers. It also completes the safepoint information with the real location
of values on the stack or in registers. Following that machine code is emitted. For every
LIR operation the corresponding machine code is emitted. The object performing this
transformation is an instance of the class LIRAssembler. There are different versions of
this object depending for which platform the VM is generated.

The method handling a LIR Java call is called emit call(LIR OpJavaCall *call) It
generates the call site depending on the LIR Code of the call object. The method is
modified, so that it emits the protection domain token move instruction if the call is a
virtual tail call.

emit_call(LIR_OpJavaCall * call) {

...

if (call->code == lir_icvirtual_call) {

if (call->is_tail_call())

asm.movoop(Address(rsp, 0), (jobject)Universe::non_oop_word());

asm.movoop(rax, (jobject)Universe::non_oop_word());

asm.call(call.addr()); // The runtime resolve entry.

store_relocation_info(virtual_call_type, tail_call_type, address_of_call_instr);

}

}

For certain instructions, e.g. allocation of an object, only a fast path is emitted inline.
If the fast path fails, execution continues in so called slow case stubs, which are emitted
at the end of a method. Exception and deoptimization handlers are also emitted at the
end of the method. To support tail calls the method entry points (see Section 4.8.6)
are emitted following the above stubs. The address of the entry points is stored in the
nmethod object.

4 Implementation 80

emit_code_epilog(LIR_Assembler* assembler) {

// generate code or slow cases

assembler->emit_slow_case_stubs();

...

assembler->emit_exception_handler();

assembler->emit_deopt_handler();

// Static tail call entry point.

assembler->emit_static_tail_call_stub();

...

}

4.8.9 Server Compiler

The server compiler builds a program dependence graph. Similar to the client compiler,
this graph contains special nodes for method invocation instructions. Those nodes also
have to be adapted to support the generation of tail call call sites. The program de-
pendence graph first contains platform independent nodes, which are called ideal nodes.
When instruction selection is performed, these nodes are replaced by platform dependent
MachNode nodes. Both of these node types for call instruction nodes are changed to
support tail calls. After the compiler has finished compiling the method, it generates
the special tail call entry points at the end of the method.

Ideal node graph

The compiler builds the ideal node graph using abstract interpretation over the bytecodes
of a method. The object that constructs the graph is called Parser. To build the graph,
it iterates over the bytecode and manipulates the state in the current SafepointNode ob-
ject. The current state of operand stack, locals and monitors is stored in a SafepointNode
object. The inputs of the SafepointNode represent the operand stack, locals and mon-
itors. If the operand stack is empty, none of the operand stack inputs is connected to a
node. If the operand stack is filled with two items, two of the operand stack inputs point
to a subclass of Node, which represents the calculation of their value. The interpretation
of the bytecodes manipulates the current SafepointNode, similar to how the ValueStack
object is manipulated in the client compiler. The code below shows a simplified version
of the do one bytecode function, which performs the abstract interpretation.

switch(bc()) { // Current bytecode.

// Push updates current SafepointNode to include new top element on operand stack.

case iconst_1: push(new ConINode(1));

case iadd: Node* a = pop(); Node * b = pop();

push(new AddINode(a,b));

}

4 Implementation 81

The ideal graph nodes representing a method invocations are CallDynamicJavaNode

and CallStaticJavaNode. They are modified, so that they can store whether a call is a
tail call and what kind of tail call, i.e. sibling or non-sibling. The static node is lowered
to a static call site, while the dynamic node is transformed to a virtual call site. The
following code shows their constructors.

If the do one bytecode function encounters one of the invoke bytecodes, it calls the
do call method. This method either emits one of the above ideal nodes, inlines the
call or creates bimorphic call sites. A bimorphic call site is similar to a monomorphic
call site with two possible targets. The receiver type check is executed at the call site.
If the check is successful, the call proceeds to a static target. If both type checks fail,
the code either continues at a call site that performs dynamic dispatching or control is
passed to the runtime, which then causes a recompilation of the method. The following
code shows how a bimorphic call site looks like.

if (recvr.type == classA)

call classA.method

else if (recvr.type == classB)

call classB.method

else

// Dynamic dispatch.

target = recvr.type.mtable[method_offset]

call target

// Or deoptimize.

call runtime

The probable receiver types are computed using profiling information from the inter-
preter. The do call method performs the following steps to generate the nodes for a
call.

• Check for monomorphic target. If the call is an invokevirtual or invokeinterface
call, the compiler tries to determine whether only a unique target method is possi-
ble. The conditions under which a virtual call is treated as a static call are similar
to the client compiler’s. If the check is successful, the call is treated as a not
virtual.

• Create call generator. A call generator is an object that creates an ideal node sub-
tree corresponding to the method call. They all share the same interface JVMState*
generate(JVMState*). Therefore they take the state of the ideal graph before the
call, generate ideal graph nodes according to the invocation instruction and return
the state after the call. The subtree can be as simple as a CallJavaNode or can
be the complete graph of an inlined method. Depending on the type of call and
user specified VM flags one of the following call generators is created.

4 Implementation 82

– WarmCallGenerator inlines the target method based on profiling information.
The compiler uses it for calls that have a known target. Because of the
premature method exit problem described in Section 4.8.8 this generator is
not used for inlining methods that contain a tail call, except if the call to be
inlined itself is a tail call.

– PredictedCallGenerator generates a bimorphic call site. It is used for vir-
tual call sites, whose profiling information shows that a major receiver exists
and at most two receiver types were encountered. The profiling informa-
tion maintains the probability that an actual receiver is encountered at a call
site. If this probability is high enough, a major receiver exists. Normally the
compiler tries to inline the static calls in the bimorphic call site.

if (recvr.type == classA) // Profiling showed 90% of invocations go to classA.

inline call to classA.method

else if (recvr.type == classB) // If profiling shows a second receiver type.

inline call to call classB.method

else

call recvr.type.mtable[method_offset]

If the called method contains a tail call, the compiler disables inlining, except
if the call is a tail call.

– VirtualCallGenerator generates a CallDynamicJavaNode and is used for
call sites that are virtual. Its generate method is changed, so that it passes
the appropriate address of the runtime resolve method to the nodes construc-
tor.

if (is_tail_call() && is_sibling()) {

target = SharedRuntime::get_resolve_virtual_tail_call_stub();

} else if (is_tail_call()) {

target = SharedRuntime::get_resolve_not_sibling_virtual_tail_call_stub();

} else { // Not a tail call.

target = SharedRuntime::get_resolve_virtual_call_stub();

}

CallDynamicJavaNode *call =

new CallDynamicJavaNode(tf, target, ..., is_tail_call, is_sibling);

– DirectCallGenerator generates a CallStaticJavaNode and is used for call
sites with a non virtual target. The generate method is changed, so it
passes the appropriate address of the runtime resolve method to the nodes
constructor.

• Generate the call site using the call generator. The call generator’s generate is
called, which causes the creation of the subgraph that corresponds to the invoca-
tion.

4 Implementation 83

MachNode graph

After the compiler has finished building the ideal graph and has performed platform
independent optimizations on it, instruction selection for the target platform happens.
The compiler replaces ideal graph nodes by MachNode nodes. To support tail calls the
nodes representing method invocations are changed to include boolean values, whether
a call is a tail call and whether a call is a sibling call. The function that performs
the matching is modified, so that it transfers this additional information from the ideal
graph node to the MachNode node.

Code generation

After the compiler has built a control flow graph and performed register allocation, it
emits code for each MachNode node. The code is stored in an architecture descriptor
file. Each node has a corresponding entry in this file. The entry contains an assembler
template of the code that is to be generated for the node. The template for the dynamic
MachNode call nodes is modified to pass the security token on the stack and to pass the
caller’s frame pointer in register esi.

emit(MachCallDynamicJavaNode* n) {

asm.lea(esi, [esp-frame_size]);

if (n->is_tail_call())

asm.movoop(Address(rsp, 0), (jobject)Universe::non_oop_word());

asm.movoop(eax, (jobject)Universe::non_oop_word());

asm.call(call.addr());

store_relocation_info(virtual_call_type, tail_call_type, address_of_call_instr);

}

After the compiler finished generating the method’s code, it creates special stubs needed
for the current method. Similarly to the client compiler, the server compiler is modified
to emit the tail call entry points and store them in the nmethod object.

4.8.10 Stack Compression

If the VM disables a tail call because the protection domain of caller and callee do
not match, the execution stack grows. If this happens in a sequence of tail calls, the
execution stack becomes full. Note that there are usually at most a handful different
protection domains in a program. Hence the protection domains in the stack frames
repeat themselves. For correct security behaviour, only stack frames containing distinct

4 Implementation 84

domains are required. Therefore, the stack can be compressed by removing the stack
frames containing duplicate information.

The VM checks on every method entry, compiled and interpreted, whether the execution
stack is full. If the stack is full, it calls a runtime routine that throws a StackOverflow

exception. To prevent this from happening, the modified VM checks on entry to this
runtime routine, whether the execution stack can be compressed by leaving some stack
frames out. If this is possible, it replaces the original stack frames by a series of de-
optimized stack frames containing no superfluous frames and resumes execution. This
guarantees that a series of tail calls always executes in bounded stack space, where the
bound is proportional to the number of different protection domains that exist in the
running program. As long as the number of different protection domains multiplied by
the maximum stack frame size in the program is below the maximum execution stack
size, tail call optimization in the sense of Section 2.7 is guaranteed.

Deoptimization is normally used to replace one compiled stack frame by one or several
interpreted frames. The following data structures are involved during the replacement
of stack frames.

• UnrollInfoBlock: It stores the number of bytes that have to be removed to remove
the deoptimized frame, the sizes of the interpreter frames that are created and the
number of interpreter frames to be created.

• vframeArray: Stores an array of vframeArrayElements which represent the inter-
preted frames. A vframeArrayElement stores the method, the current bytecode
index, monitors, locals and operand stack of the interpreted frame that is to be
created.

When deoptimization is required, control enters a deoptimization runtime stub. The
code in the stub first calls a function that builds a structure representing the interpreted
frames the UnrollInfoBlock and the vframeArray containing the data. Then it removes
the stack frame that is to be deoptimized and replaces it by a series of skeletal interpreter
frames using the information in the UnrollInfoBlock. The interpreter frames contain
no correct values at this point. Next the code calls a function that fills the skeletal
interpreter frames with values for locals, operand stack and monitors. This step uses
the vframeArray contained in the UnrollInfoBlock, which stores this values. Finally
execution continues in the topmost interpreter frame.

To support compression of the stack the same infrastructure is used. Instead of calculat-
ing UnrollInfoBlock and vFrameArray for only one compiled frame, this information
is calculated for the whole (compressed stack). The rest of the deoptimization process
stays the same, i.e. the same functions are used. Figure 4.27 illustrates this process.

4 Implementation 85

B.method

A.method

B.method

A.method

B.method

A.method

...

A.main

Execution stack

deopt_entry_stack_compression:
 fetch_unroll_info_stack_compression()

 pop_old_frames_and_push_skeletal_interpreter_frames()

 unpack_vframes()

 continue_in_interpreter()

vframe
A.method

vframe
B.method

UnrollInfo
Block A.main

A.method

B.method

StackOverflow

Deoptimization runtime entry:
A.method

Execution stack

5

1

2

3

4

Figure 4.27: Overview of stack compression process

In addition to the existing classes that handle deoptimization, a utility class
StackCompressor is added to help identifying, whether an execution stack can be com-
pressed and to create a vFrameArray containing a representation of the compressed
stack. It has one static function can compress, which determines whether the stack can
be compressed by looking for sequential frames that are tail calling. If there are such
frames, the function returns true, assuming that one of those frames is removable. Note
that this is not necessarily the case, because if the two frames contain different pro-
tection domains and no other frame on the stack contains the protection domain they
cannot be removed. This unlikely case is treated when a compressed representation of
the stack is built. To build a compressed representation of the current thread’s stack, the
deoptimization code creates an StackCompressor object and calls its compress frames

method, which returns a vFrameArray object.

When VM detects a stack overflow, control continues in one of two runtime stubs respon-
sible for throwing a StackOverflow exception. Which of the two runtime stubs depends
on whether the called method is executed in the interpreter or is a compiled method.
Those runtime stub are modified, so that they continue execution in a special deopti-
mization entry point, if the stack is compressible. To determine whether the stack is
compressible, the runtime stubs call the utility function can compress. If the function
returns false, the normal StackOverflow exception is thrown, otherwise the runtime
stub continues execution at the deoptimization entry responsible for compressing the
stack.

The code at this entry first calls the function fetch unroll info stack compression,
which builds the vframeArray and creates an UnrollInfoBlock object corresponding to
the compressed execution stack. After this function returns, execution continues at the

4 Implementation 86

normal deoptimization path and replaces the stack frames using previously computed
information. This corresponds to steps 3, 4 and 5 in Figure 4.27.

To build the compressed representation the fetch unroll info stack compression

function creates a StackCompressor object and calls its compress frames function.
The StackCompressor object maintains an array of FrameInfo objects. A FrameInfo

object is a representation of a stack frame like the vframeArrayElement. Instead of
using regular pointers (oops) to refer to objects, it uses Handle objects to encapsulate
the pointers. This is necessary because during the stack walking a safepoint might occur,
when an interpreted frame is queried for its content. At this point the garbage collector
might move objects, making the values in the oops invalid. If Handle objects are used,
the garbage collector can update the pointers within them.

The code within the compress frames function walks the stack and builds an array of
FrameInfo objects. To create a FrameInfo object, the code uses the VM’s representation
of the current stack frame javaVFrame, which can be queried for the locals, monitors,
current bci and objects on the operand stack. Note that a javaVFrame does not actually
contain those objects. It computes their values dynamically using the debugging infor-
mation for compiled frames or the interpreter runtime for interpreted frames. Hence
the need to use a special object to store those values. The following code shows the
algorithm used.

compress_frames() {

javaVFrame previous_frame;

for each javaVFrame curr on the current stack do

if (! previous_frame.is_tail_call()) or

! curr.is_tail_call() or

! previous_protection_domains.contains(curr.protection_domain()))

FrameInfo f = new FrameInfo(curr);

frameInfoArray.push(f);

}

previous_protection_domains.add(curr.protection_domain());

previous_frame = j;

end

vframeArray array = vFrameArray::allocate(frameInfoArray, ...);

return array.

}

The topmost frame on the stack is treated specially. Normally the javaVFrame contains
the state of frame after the method invocation, i.e. the parameters are popped of the
operand stack. This is wanted behaviour except for the topmost frame because we want
to re-execute the failed invocation. The code that builds the FrameInfo reconstructs the
parameters from the stack frame and corrects the operand stack values retrieved from
the javaVFrame.

4 Implementation 87

After the vFrameArray is built using the FrameInfo array, control resumes in the
fetch unroll info stack compression function. It uses the array to compute the
UnrollInfoBlock and returns both to the deoptimization code. The code uses this data
to replace the stack frames and finally resumes execution in the topmost frame.

4.9 Jumping Tail Calls

The call sites showed so far always use a call instruction to continue execution at the
method entry point. Modern processors use the call and ret instructions to predict
the return address. If those instructions do not match, as it is the case in a series of tail
calls, performance can degrade. A series of tail calls in our implementation issues many
calls but only the last method in the series returns. This invalidates the internal return
address stack, which the processor uses to predict the next instruction after a return. A
mispredicted return causes performance hit. If the call instruction is replaced by a jmp

instruction, the internal state is preserved and the internal return address stack is still
valid, when a series of tail call returns. Hence the actual tail call sites have the following
form.

sub esp 4 // Make room for return address

mov [esp] return_label

jmp tail_call_entry_point

return_label:

...

The call instruction is replaced by a jmp preceded by two instructions that safe the
return address on the stack. The return address on the stack is needed because the
runtime functions requires it, e.g. for changing the state from a monomorphic to a
polymorphic call.

4.10 Optimizing Sibling Calls

The implementation described so far allows for general tail call optimization in the Java
HotSpot

TM
VM. This was the main goal of this thesis. When evaluating this implementa-

tion’s performance compared to approaches used with VM’s that do not support tail call
optimization, results showed that for polymorphic calls the implementation performed
worse than a trampolined version, if the method has many parameters. This is due to
the overhead of moving the arguments at the call target, effectively moving arguments
twice on every call. Therefore a second prototype was implemented, which moves the
arguments before the call. This prototype does not support stack compression. If there

4 Implementation 88

is a protection domain mismatch, an exception is thrown. The following changes to the
existing implementation are made.

• Server and client compiler sibling tail call sites move arguments directly onto the
caller’s incoming argument area. The code that builds the LIR for moving ar-
guments and the code for building the MachNode graph is modified, so that it
moves the arguments to the appropriate place in the caller’s caller instead of to
the caller’s outgoing argument area.

• The verified and unverified sibling tail call entry points do not move arguments.

• The verified and unverified sibling compiled-to-interpreter adapters do not move
arguments.

• The runtime is modified to correct the oop mapping, if it detects that a sibling tail
call has moved the arguments on to the caller’s incoming parameter area.

The prototype could be extended to support stack compression by adding additional
entry points to every method, which move the arguments from the caller’s incoming
argument area to the caller’s outgoing argument area. If the tail call is disabled, control
is transferred to these entry points before it continues at a normal method entry. Due
to the limited time frame of a master thesis this is left as a future improvement.

5 Evaluation

The optimization is implemented in version b44 of Sun’s OpenJDK 7 for the IA-32
architecture. To evaluate performance of tail calls, we compare the execution times of
a program that performs tail calls in our implementation to the same program that
performs normal calls instead and to a modified version of the program that uses a
trampoline to guarantee that the stack does not overflow. The program contains a
method that performs recursive calls that can be tail call optimized. Several versions of
the program with varying number of parameters for this method and different kind of
call sites are compared. While this does not show performance of real programs, where
the fraction of tail call instructions is likely less (and hence the impact of a speedup or
slowdown is less), it gives a good estimation of the worst slowdown or best speedup, we
can expect from using the tail call optimizing implementation.

The test machine is an Apple Mac Pro with two Intel Core2 Xeon Processors running at
2 GHz. Each processor has 2 cores and 4 Megabyte L2 cache. The machine is equipped
with 3 Gigabyte main memory and uses OpenSolaris 2008.11 as operating system.

5.1 Program

The program is designed to measure the overhead of tail calls. The core is a method test,
which repeatedly invokes a method tailcaller. This method performs the recursive
calls.

void test(int recursionDepth, int repeat) {

int result;

for (int i = 0 ; i < repeat; i++) {

result = tailcaller(recursionDepth, 0, ...numberArgs);

//or = object.tailcaller(recursionDepth, 0, ...);

}

}

To measure the execution time, the current system time is taken before and after this
method is called. The program is parameterized by the recursion depth to be measured.

89

5 Evaluation 90

void main(String args[]) {

int recursionDepth = parameter;

int repeat = 90000000 / recursionDepth;

...// Warmup

long start = System.currentTimeMillis();

test(recursionDepth, repeat);

long end = System.currentTimeMillis();

println(end-start);

}

The function that performs the tail call is either a static method or a method of an object.
It performs an addition or subtraction on each argument before calling a second function
tailcallee. The first argument of those functions is the counter of the recursion depth.
It is decreased on every recursive call. If it reaches zero the functions return.

int tailcaller(int recDepth, int arg2, .. ., int argn) {

if (recDepth==0) return arg2;

else

return tailcallee(recDepth-1, arg2+1, .. ., argn +1);

}

int tailcallee(int recDepth, int arg2, .. ., int argn) {

if (recDepth==0) return arg2;

else

return tailcaller(recDepth-1, arg2+1, .. ., argn +1);

}

To measure polymorphic call sites, two global variables are used to ensure the call site
sees two distinct receiver classes. Those variables are initialized before measurement of
the execution time starts.

class Test1 {

int tailcaller(int recDepth, .. .) {

if (recDepth==0) return arg2;

else {

if (recDepth%3==0) target = instanceTest1;

else target = instanceTest2;

return target.tailcallee(recDepth-1);

}}}

To compare the tail calling implementation to alternative techniques, a trampolined
version of above methods is used. The principle employed is the same as explained in
Section 2.6. For efficiency we do not allocate new continuation objects, every time a
tail call is performed. Instead a Context object is used, which holds the parameters
and the result. This object is passed to the apply method. The apply method returns
instances of subclasses of the Procedure class, the tail called method. These instances
are initialized once before the test is run.

5 Evaluation 91

class Context {

int recDepth; int arg2; ... int argn; int result;

}

abstract class Procedure {

Procedure apply(Context c);

}

class TailCaller extends Procedure {

Procedure apply(Context c) {

if (c.recDepth==0) {

c.result=c.arg2;

return null;

}

c.recDepth++;

c.argn +=2;

return tailCalleeInstance; // class TailCallee extends Procedure ...

}

}

int tailcaller(int recDepth, .. ., int argn) {

Context c = context; // Global Variable.

Procedure p = tailCallerInstance;

c.recDepth = recDepth;

c.argn = argn;

do { // Trampoline.

p = p.apply(c);

} while (p!=null);

return c.result;

}

TestCaller testCallerInstance; TestCallee testCalleeInstance;

The trampolined version is inherently polymorphic. Therefore we can only measure the
above version, i.e. there is no differentiation between static and polymorphic call sites.

The program is tested with tailcaller methods, which have two to eight arguments.
There are three versions of every program, where the recursive call sites are either static,
monomorphic or polymorphic. For every of this tests we use runs with recursion depth
1, 10, 50, 100, 500 and 1000. The tests are run using the client and server compiler. The
initial tail call implementation, which moves the arguments at the method entry and
the optimized tail call implementation, which moves the arguments at the call site, are
compared. Results of the server compiler are not reported, because they exhibit similar
behaviour as the client compiler results. The same holds for monomorphic calls. They
show the same behaviour as polymorphic calls. For brevity of presentation we leave both
out. The following configurations are used.

• Base: The client compiler is used and no tail call optimization is performed. Every
call increases the size of the execution stack.

5 Evaluation 92

• Trampoline: The client compiler is used and the trampolined version of the pro-
gram is executed.

• Entry: The client compiler is used with tail call optimization enabled. Sibling
tail calls move the arguments to the caller’s outgoing area at the callsite and on
method entry from there onto the caller’s incoming area.

• Callsite: The client compiler is used with tail call optimization enabled. Sibling
tail calls move the arguments at the call site as described in Section 4.10.

The program is verified to be executing in compiled code by using debugging flags. Each
measurement is repeated 10 times and the arithmetic mean of the results are reported.
No garbage collection is happening, while the time is measured. Inlining is turned off.
Results are reported as speedup in percent relative to the Base configuration.

5.2 Static Sibling Calls

Figure 5.1, 5.2, 5.3 and 5.4 show the results of running the programs when both tailcaller

and tailcallee have the same number of parameters ranging from two to eight. In the
configurations that perform tail call optimization, the call continues at the sibling tail
call method entries.

10
0

10
0

10
0

10
0

10
0

10
0

47 47

55 54

70

10
1

14
1

14
0 15

7

15
5

19
7

28
7

14
1

13
9 15

7

15
5

19
8

28
6

0

50

100

150

200

250

300

350

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.1: Static call with two arguments

5 Evaluation 93

10
0

10
0

10
0

10
0

10
0

10
0

55 58 61 60

76

10
511

2

10
0 10
5

10
3

12
7

17
7

12
5 13

7

13
2

12
9

16
2

22
3

0

50

100

150

200

250

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.2: Static call with four arguments

10
0

10
0

10
0

10
0

10
0

10
0

40

66

75

83

11
5

13
7

10
0

84 84 81

10
4

13
414

5

14
5 15

3

15
3

20
8

24
8

0

50

100

150

200

250

300

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.3: Static call with six arguments

5 Evaluation 94

10
0

10
0

10
0

10
0

10
0

10
0

62

84

93 95

14
7

16
8

11
8

89 89 89

13
5

15
3

14
8

12
9 13

6

13
5

20
8

23
6

0

50

100

150

200

250

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.4: Static call with eight arguments

Faster method prolog The code at method entry of sibling tail calls creates the frame
of the callee by subtracting the callee’s frame size from the frame pointer and storing
this value in the stack pointer. The old frame pointer is already on the stack. Hence
one instruction less is needed compared to the normal method entry, which first pushes
the old frame pointer to the stack and then builds the new frame by subtracting from
the stack pointer. This explains the 41% advantage of Entry and Callsite over Base at
recursion depth two with two parameters (all parameters passed in registers).

Moving arguments at the call site The configuration Callsite is always faster than
normal method execution, the trampolined version and the tail call version that moves
arguments twice. Callsite is typically around 20% faster and up to two times faster than
Entry (six arguments recursion depth 500). This implies that on architectures with few
registers like IA32 this optimization is beneficial. We can expect that in real programs,
running in the second prototype, i.e. Callsite, static sibling calls that cause tail call
optimization do not pose a performance overhead when compared to programs that do
not perform tail call optimization or use trampolines to achieve it.

All arguments in registers When the program is executed with two parameters, the
configuration Callsite and Entry are equally fast. This is because for static calls the first
two integer parameters are passed in registers. No arguments are passed on the stack.

5 Evaluation 95

From this we can conclude that on architectures, where most of the parameters can be
passed in registers, e.g. on Sparc and on x86-64, the optimization described in Section
4.10 is not necessary because programs rarely use methods that have more parameters
than would fit into the parameter registers and the overhead of moving arguments on
the stack seldom occurs. With increasing parameter size configuration Entry becomes
slower relative to Callsite. This is due to the overhead of moving the arguments twice.

Normal calls vs. moving arguments twice Normal calls increase the size of the call
stack. After a certain recursion depth, the memory used for the execution stack does
not fit into the processors first cache, the level one (L1) cache. Data has to be evicted
to the L2 cache. This causes an overhead in execution time for programs executing with
configuration Base.

This effect can be observed when comparing execution times of Entry to Base at recur-
sion depths 500 and 1000 for calls that have six or more parameters. Although Entry
has the additional overhead of moving arguments twice it is faster than Base. For calls
with recursion depth below that we see an overhead of up to 23% (six arguments re-
cursion depth 100) compared to Base. The time that Entry spends extra for moving
the arguments outweighs the time advantage that Entry has because the stack does not
grow and less L1 cache misses occur. If the argument size is increased however the stack
of Base grows faster and the overhead that Entry has due to moving decreases, e.g. to
13% for 8 arguments and recursion depth 100.

We verified the claim that L1 cache misses indeed happen more often by taking the
assembler output of the two programs and compiling it into executables. We observed
cache behaviour of this executables with the Unix tool oprofile[36]. This tool allows
reading the processors internal performance counters. The program corresponding to
Base showed significant (e.g. 40 times more for recursion depth 500 and six parameters)
more cache misses than the program corresponding to Entry.

From this we conclude that with programs containing mostly deep recursions, i.e. greater
than 500, Entry poses no overhead. If many tail call optimized calls happen that do not
recurse that far, we can expect a worst slow down of up to 23% compared to a program
that performs normal calls. Note that these numbers only apply, if the program consists
mostly of tail calls. If the fraction of tail calls within the program decreases the actual
slow down decreases.

Trampolined calls Trampoline shows a significant overhead when compared to the
other configurations at low recursion depths. This is due to the costs of the loop,
which repeatedly calls the next procedure. The actual call to the method is a virtual

5 Evaluation 96

call resulting in additional overhead. At deep recursions (500 to 1000) the cache effect
described in the above paragraph results in Base being slower than the trampolined
version, e.g. at recursion depth 500 with six parameters Trampoline is 10% faster than
Entry. This is due the overhead of Entry moving the arguments twice.

In a real program when automatic conversion is used, every call that is not a tail call
has to use a trampoline, e.g. if tailcaller contains calls to two other methods a and b

then the body of the Tailcaller.apply method contains two trampolines for calling to
A.apply and B.apply. The trampoline has to be used for every call, because in general
it is unknown if the called methods contain tail calls and hence need a trampoline. The
overhead of trampolines in such cases is therefore much higher than in this example
where only one trampoline exists.

To validate that claim, we modified the tailcaller method to include one call to a method
calc that adds its four parameters. With this modified version the Trampoline config-
uration includes a trampoline in the Tailcaller.apply method, which calls to the
method Calc.apply. Trampoline is already 20% slower than the program executing in
Entry when using a recursion depth of 500 or 1000. Hence we believe that in most real
programs the general overhead of trampolines outweighs the time advantage for deep
recursions. The disadvantage that Entry exhibits with less deep recursions, is compen-
sated by the advantage of Entry on deep recursions and regular calls, which do not tail
call.

5.3 Non-Sibling Calls

To show how non-sibling calls that are tail call optimized influence performance, the
program is executed in a variation, where tailcallee has two more arguments than
tailcaller. The call from tailcaller to tailcallee hence is a non-sibling call. In
tail call optimizing implementations the non-sibling tail call entry is reached. Figure
5.5 and 5.6 show the execution times of the different configurations. An overhead in
Callsite and Entry compared to Base is expected, because non-sibling tail calls cause
execution to be continued in interpreted mode, every time a series of tail calls starts.
The deeper the recursion the less impact this has on total execution time because more
time is spent recursing and the less often program execution continues in the interpreter.
Every time code enters the non-sibling entry, the caller’s caller is checked whether it is
an interpreted frame. This causes additional runtime overhead. The compiler reserves
a minimum of four stack slots for every call. Every call with two or four parameters is
a sibling call. Therefore we only show the results of calls with six and eight parameters
in this section.

5 Evaluation 97

10
0

10
0

10
0

10
0

10
0

10
0

50 52

58

63

89

11
7

43

38

51 53

81

10
6

44

38

59

62

92

12
1

0

20

40

60

80

100

120

140

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.5: Non-sibling calls six arguments

10
0

10
0

10
0

10
0

10
0

10
0

64

77

85 86

12
4

14
5

45 43

65

70

10
6

12
5

52

45

70

74

11
4

13
3

0

20

40

60

80

100

120

140

160

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.6: Non-sibling calls eight arguments

At recursion depth 500 Entry is 24% slower than Base and Callsite is 9% slower when the
six parameter version is used. At recursion depth 1000 both are faster. The trampoline
version matches and exceeds the speed of the tail calling versions, because it does not

5 Evaluation 98

have to resort to the interpreter. Non-sibling tail calls in Callsite also pay a performance
penalty when compared to Base, because arguments are moved twice for non-sibling
calls.

This overhead can be prevented by setting the JVM flag MinOutgoingArgsSlotSize to
a value that is equal to the biggest incoming argument stack slot size required by any
(or any frequently executed) method in the program.

5.4 Polymorphic Calls

Figure 5.7, 5.8, 5.9 and 5.10 show the results of running the polymorphic version of the
program with two to eight arguments. All calls are sibling calls. The calls to tailcaller

and tailcallee go through a vtable stub, which performs the dynamic dispatch. This
vtable stub performs a protection domain check in configuration Callsite and Entry.

10
0

10
0

10
0

10
0

10
0

10
0

48

75

11
2

11
0

12
4

13
7

11
2

75

11
9 12

4

13
7

15
0

11
9

10
3

14
6 15

1 15
9

17
1

0

20

40

60

80

100

120

140

160

180

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.7: Polymorphic call with two arguments

5 Evaluation 99

10
0

10
0

10
0

10
0

10
0

10
0

70

77

12
7

11
8

13
8

15
3

11
8

89

14
3

14
0

16
0 16

9

14
2

11
3

15
3

15
3 16

2 17
1

0

20

40

60

80

100

120

140

160

180

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.8: Polymorphic call with four arguments

10
0

10
0

10
0

10
0

10
0

10
0

59

89

12
1

11
5

13
9 15

2

84 86

11
6

11
8

13
6 14

6

11
2 12

2

16
3

16
5

19
2 20

5

0

50

100

150

200

250

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.9: Polymorphic call with six arguments

5 Evaluation 100

10
0

10
0

10
0

10
0

10
0

10
0

68

92

13
0

12
6

14
9 15

4

92

83

10
1

10
0 11

1

11
2

10
4

11
6

14
7

15
0

17
2

17
5

0

20

40

60

80

100

120

140

160

180

200

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.10: Polymorphic call with eight arguments

Faster method prolog The advantage that Callsite and Entry exhibit due to the shorter
method prolog can be also observed for polymorphic calls. When the recursion depth is
one and the program has calls with two or four parameters, both configurations are faster
than Base. For the programs where six or eight parameters are used, this advantage is
not sufficient to counterbalance the additional overhead that Entry has for moving the
arguments twice. Callsite is always faster than Base.

Moving arguments at the call site In correspondence to static calls Callsite is also
always faster than the other configurations. It has the advantage of cache locality and
a shorter method prolog when compared to Base. Compared to Entry, it does not have
to move the arguments a second time. This advantage makes up for up to 57% faster
execution time (recursion depth 1000 with eight arguments). We can again conclude that
this optimization is beneficial, if the executed programs contain many short methods with
many parameters that perform tail calls.

Normal calls vs. moving arguments twice We can observe the overhead that Entry
has compared to Base at recursion depth one and ten, because it moves the arguments
to the caller’s incoming area at method entry. At deeper recursion depths the cache
locality benefit and the shorter prolog of Entry outweighs that overhead. Here, Entry

5 Evaluation 101

is faster than Base. In real programs the outcome depends on whether most tail calls
recurse beyond a depth of ten or not.

Trampolined calls The usage of a trampoline poses an overhead at recursion depth 1
when compared to the other configurations. At recursion depth ten Trampoline is already
faster than Entry when the program is run with functions with six or eight parameters.
This is because Trampoline does not move arguments twice. The disadvantage that
Trampoline has when compared to static calls, because it uses a polymorphic call site,
does not weigh in. At recursion depth 500 and with eight parameters Trampoline is 34%
faster than Entry. This disadvantage of Entry motivated to build the second prototype
Callsite.

Non-sibling calls Figure 5.11 shows the performance of non-sibling polymorphic calls,
when functions with eight arguments are used. We can observe the same characteristics
as with static calls. Both Callsite and Entry are slower at low recursion depths. The
deeper the recursion the less impact the time spent in the interpreter has. Trampoline
is faster than Callsite and Entry because it does not have to resort to the interpreter.

10
0

10
0

10
0

10
0

10
0

10
0

57

81

11
8

11
4

13
1 13

7

49

45

80

86

10
2 10

6

54

50

96

10
3

11
6 12

0

0

20

40

60

80

100

120

140

160

1 10 50 100 500 1000

Recursion depth

S
pe

ed
up

 (
%

)

base trampoline entry callsite

Figure 5.11: Polymorphic non-sibling calls with eight arguments

5 Evaluation 102

5.5 Stack Compression

If stack compression is enabled, the implementation tries to compress a series of tail calls,
if the stack overflows. The compress operation uses the deoptimization infrastructure.
Hence it is slow. We try to measure a worst case scenario again using our test program
with two, four and eight parameter versions. The program is run once using a recursion
depth of 1000 and once using a recursion depth of 20000. At 20000 the stack overflows in
all three versions if stack compression is turned off. The program with methods having
two parameters is approximately 60 times slower when stack compression happens, the
one with four parameters is 50 times slower and the one with eight parameters is 20 times
slower. The slowdown improves with increasing parameter size because the frame size
of the methods increases. Less frames are to be compressed. Note that this slowdown
only happens, if the recursion depth causes the stack to overflow. In the conclusions we
propose an improvement that should help lower the slow down.

6 Related Work

Probst [47] describes the addition of a tail call calling convention to the GNU Compiler
Collection (GCC). The standard C calling convention requires the caller to remove the
arguments after a call. Compilers implement this either by popping the arguments of
the stack after the call instructions or by using a fixed frame size for a method that
provides enough space for all outgoing function parameters. Because of this ’caller pops
arguments’ convention the c calling convention can not support tail calls between two
function where the called function has more arguments than the caller - a non-sibling call.
Such a call extends the caller’s caller frame to make room for the additional parameters
of the callee. When the callee returns the caller’s caller stack pointer has a wrong value.
The tail call calling convention proposed by Probst solves this problem by using a ’callee
pops arguments’ convention. Every function removes its arguments on return. Suppose
we have a sequence of tail calls f(a) calls g(a,b) calls h(a,b,c). The call to f(a)

causes the caller’s caller stack pointer to be extended by one stack slot. f(a) tail calling
g(a,b) causes the caller’s caller stack pointer again to be extended by one stack slot (to
make room for the additional argument of g). The same happens between the call from
g to h. Finally h returns popping three parameters of the stack resulting in a proper
alignment of the caller’s caller stack pointer. This convention was implemented for IA-32
and Alpha. The changes were not integrated into the official version of GCC. The same
approach could be used for implementing non-sibling tail calls in the Java HotSpot

TM

VM, if the assumption that frames have a fixed size was not so wide spread in the code
base of the VM.

Bauer [5] describes the implementation of indirect sibling tail calls for GCC, which had
not been supported up to the publication of his thesis. Indirect sibling calls are tail
calls, where the call target is computed dynamically. This less radical change became
part of the official version of GCC. GCC currently does not support non-sibling tail
calls. Sibling calls are implemented as described in Section 2.4. A tail call moves the
arguments on to the caller’s caller outgoing arguments area, removes the caller’s stack
frame and jumps to the callee. This approach makes it unnecessary to have special entry
points to a function that handle tail calls. Since the programming languages that GCC
supports do not feature a stack based security mechanism, a call that is a tail call can
always remove the caller’s stack frame.

103

6 Related Work 104

IBM’s Java Just-in-Time compiler version 3.0 [54] uses tail recursion elimination as
described in Section 2.6 to optimize self recursive static method invocations. The method
call is replaced by a branch to the beginning of the method and the parameters are set
accordingly. This is not sufficient to guarantee general tail call optimization.

The LLVM compiler infrastructure [34] is similar to a Java VM in that it also provides
a virtual instruction set, which is executed by the LLVM infrastructure. Instead of
bytecodes that operate on an operand stack the instruction set represents a virtual
load store architecture with three operand instructions. The result of instructions is
stored in variables that model an infinite register set. All variables in a LLVM program
are in SSA-form. The instruction set contains general purpose instructions found in
modern processors such as control flow instructions, binary arithmetic operators, logical
operators and comparison operations. In addition it contains more high-level constructs
such as memory allocation instructions, function calls and exception handling.

The LLVM infrastructure provides an in-memory graph based representation of the
program on which optimizations are defined and which provides the basis for code gen-
eration. This representation is similar to HotSpot

TM
’s client compiler’s HIR in that it is

a control flow graph of basic blocks containing instructions. Instructions refer to their in-
puts through pointers. There are various backends that transform this representation to
machine code either at compile time or just-in-time. The LLVM instruction set supports
tail call’s through a ’tailcall’ prefix and a special calling convention ’fastcc’. If a call is
in tail call position, caller and callee are marked as using the ’fastcc’ convention, the
backend can optimize the tail call removing the caller’s frame. The author of this thesis
implemented tail calls for the x86 32bit and 64bit and powerpc 32bit backends. Simi-
lar to Probst the fastcc calling convention causes functions to pop their arguments on
return. LLVM also provides an optimization pass defined on the platform independent
graph that performs tail recursion elimination.

Peyton Jones et al. [46] describe a portable assembly language called C–. It is designed
to replace the programming language C as a portable backend language. Many language
implementations were using C as target when C– was created. It’s syntax is similar to
the sytnax of the C but features only a limited number of data types. It is different from
C in that it provides a runtime interface, which allows writing runtime services such as
garbage collection, exception handling and debugging. C– supports tail calls by a special
function call instruction jump. A C– backend converts such an instruction to a tail call,
which replaces the caller’s stack frame by the callee’s frame. How this is accomplished
is not further specified. C– has runtime support for walking the stack but no built-in
support for a security access mechanism based on stack frames. If such a mechanism is
built, the implementor has to deal with the fact that the tail call removes a stack frame
possibly loosing information.

6 Related Work 105

The .Net framework [8] provides a virtual machine—the common language runtime
(CLR)—that has an instruction set, the Microsoft Intermediate Language MSIL, that
operates on an operand stack similar to Java bytecode. MSIL features a tailcall prefix
that can precede a call instruction. The call is then executed by the CLR as a tail call
removing the caller’s stack frame. However the documentation [39] says that the stack
frame is not removed, if control is transferred from untrusted code to trusted code. Such
a transition is equivalent to a protection domain mismatch in the JVM.

Clements and Felleisen [12] describe an abstract machine that can optimize all tail calls
while still maintaining correct security information in the presence of stack inspection.
The proposed machine stores a table of permissions with each frame. When a tail call
is performed the table of the caller’s caller is updated to include the permissions of
the caller. When the stack is inspected these tables are taken into account. Hence the
permissions of the removed caller frame are not lost. Using such a scheme within the Java
HotSpot

TM
VM incurs an overhead for every tail call that involves differing protection

domains even if the stack does not overflow. Hence we decided to lazily compress the
stack.

Schinz and Odersky [50] describe how to implement tail call optimization on a JVM that
does not support it. They transform the program to use trampolines as described in
Section 2.6. The disadvantage of this method compared to supporting tail calls natively
within the JVM is the performance overhead and the additional implementation work
that is required.

7 Conclusions

The presented changes to the Java HotSpot
TM

VM allow for general tail call optimization
in the presence of the Java access security mechanism. A series of tail calls can execute
in bounded stack space not causing the stack to overflow. A language implementation
can rely on the fact that a series of tail calls does not cause a stack overflow exception.
This was the main goal of this thesis.

The following components of the Java HotSpot
TM

VM were modified to handle tail calls

• The semantics of Java bytecode was augmented to allow marking method invoca-
tions as tail calls using the wide prefix.

• The bytecode verifier was changed to check the conditions under which a tail call
is valid.

• The interpreter was modified to handle tail call invocation instructions.

• The client compiler was modified to emit special call sites for tail calls that include
the protection domain token. It also emits code for the different tail call method
entry points.

• The server compiler was modified to emit special call sites for tail calls and emit
code for the tail call method entry points.

• The runtime was modified to link the appropriate entry points at call sites.

• The deoptimization infrastructure was extended to allow compressing the execution
stack when a series of tail calls causes the stack to overflow.

The evaluation shows that for sibling calls performance is faster than a normal method
invocation. Non-sibling calls currently cause a performance overhead on calls that do
not recurse deep because control is often transferred into the interpreter. The imple-
mentation provides a flag the user can set MinOutgoingArgsSlotSize, which helps to
minimize the effect of non-sibling tail calls. If this flag has a value other than zero, every
stack frame reserves an outgoing argument area of at least the size of the value of this
flag. Hence every call to a method that requires at most this many stack slots is a sibling
tail call and does not pay the performance penalty.

106

7 Conclusions 107

The existing prototype already shows good performance especially when compared to
alternative methods on JVMs that do not support tail call optimizations. However the
following enhancement could be applied to further improve performance:

• Usage of adapter frames for non-sibling tail calls. When a non-sibling tail call
happens and the caller’s caller frame is not interpreted it causes control to continue
in an interpreted frame. This incurs a significant performance hit. Instead of
resorting to the interpreter, the non-sibling method entry could create an adapter
frame where the arguments can be moved. Every subsequent tail call could then
extend this adapter frame. The creation of such an adapter frame is cheap (a few
instructions) compared to transferring control to the interpreter.

• Eagerly compressing the stack. Currently if the protection domain check fails,
the tail call is disabled. If the recursion is deep enough, the stack overflow and
is compressed by the implementation. This compression is slow because it has to
walk the whole stack analyzing the frames content. In many cases the protection
domains repeat themselves after few frames (e.g. as shown in Figure 4.6, where
the protection domain repeats itself every second frame). This observation can be
used to improve the worst cases performance for such cases. Instead of disabling
the tail call if the caller’s and callee’s protection domain mismatch a check could
be performed, which inspects the last n caller’s protection domains for a match. If
an equal domain is found for one of those methods the tail call can be performed.
If the protection domain is not found the tail call is disabled. While this decreases
performance for calls that never cause a StackOverflow because of the overhead
caused by this check, the worst cases performance is better because stack com-
pression happens less or never (if there are never more then n frames between two
differing protection domains).

• Inlining methods that contain tail calls. We currently disable inlining for calls
to methods that contain tail calls (see Section 4.8.8). This can negatively effect
performance. An improved version would also inline non-tail calls to methods that
contain tail calls. To maintain correct execution behaviour, the implementation
would disable tail calls in such inlined methods. This transformation does not
invalidate tail call optimization because inlining does not cause the creation of a
new frame.

If stack frames in compiled code are not extendable, special cases to handle non-sibling
tail calls have to be introduced in the JVM. In our implementation every sibling tail call
entry point has a corresponding non-sibling tail call entry point. Hence there are two
extra entry points to a compiled method (nmethod) and two extra entry points to the
compiled-to-interpreted adapters. Extra logic within the JVM is needed to create the
initial extendable frame in a series of non-sibling tail calls. In our implementation this

7 Conclusions 108

logic causes a run of the method in the interpreter. An alternative technique would be to
use a special extendable adapter frame. All these aspects complicate the implementation
of tail calls.

An alternative specification that eases the implementation of tail calls could limit tail
call optimization to sibling tail calls. The bytecode verifier would reject all other tail
calls. A sibling tail call in this context would be a tail call from a method f to g where
the signature of the parameters of g fits into the signature of the parameters of f. The
definition of fits into has to guarantee that the stack space required for the parameters
of g is less or equal to the stack space required for the parameters of f on all virtual
machines that implement the specification.

A possible definition would be to require that for each n occurrences of parameters of
type X in the signature of g, there are at least n occurrences of parameters of type X

in the signature of f. For example the following call would be a sibling tail call.

int f(int a, byte b, int c, byte d) {

return g((int)a, (int)b, (byte)c, (byte)d);

}

But the following call would not be a sibling tail call because the signature of f contains
only one integer parameter.

int f(byte a, int b) {

return g((int)1000+a, (int)b);

}

Programming language compilers that output bytecode can work around the sibling
tail call restriction by emitting additional artificial parameters to satisfy the sibling
requirement. For example the previous signature could be changed by the language
compiler to include the required second integer parameter.

int f(byte a, int b, int artificial) {

return g((int)1000+a, (int)b);

}

The disadvantages of this restriction are

• Method signatures contain parameters that are never accessed in the method.

• Slower code. Depending on how the compiler handles parameters and how stack
slots are managed, additional moves for the artificial parameters are introduced.
In the following example the call to f can cause extra moves for the artificial

parameter.

int f(byte a, int b, int artificial) {

7 Conclusions 109

if (...) return g((int)1000+a, (int)b);

return f(a, b, artificial);

}

The server compiler in the Java HotSpot
TM

VM views stack slots as an extension
to the machine registers. Hence it recognizes that it does not need to move the
artificial parameter in the example above. The client compiler handles stack slots
differently and therefore emit a series of moves. If f is called from another function,
there are always additional moves for the artificial parameter.

for (int i =) {

res f(a,b, /*artificial move*/0);

}

The changes to the Java HotSpot
TM

VM are available at the multi-language Da Vinci
Machine project [49], which purpose is to experiment with features required for languages
other than Java. The author hopes that they will form the basis for bringing tail calls
to the Java HotSpot

TM
VM.

List of Figures

2.1 Stack layout . 8
2.2 Incoming and outgoing argument area . 9
2.3 Stack states during a call sequence . 10
2.4 Stack states during a tail call sequence . 13

3.1 Class loading and linking process . 22
3.2 Environment during execution of accLen method 22
3.3 Overview of the Java HotSpot

TM
VM . 24

3.4 VM internal representation of ListElem class 26
3.5 The deoptimization process . 28
3.6 Execution of a bytecode in the interpreter 29
3.7 The compiler building the instruction list within a basic block 31
3.8 HIR and LIR for the ListElem.accLen method 32
3.9 Ideal graph of accLen method . 34

4.1 Bytecode of a method containing a tail call 38
4.2 Dynamic dispatch and inline caching . 42
4.3 Wrong oop map at tail call when entering runtime 44
4.4 Data structure used for method calls . 45
4.5 Access security mechanism . 47
4.6 Dynamically dispatched tail call uses security token 48
4.7 Tail call stack frames are lazily compressed 49
4.8 Interpreter stack frame layout . 51
4.9 Execution stack of interpreter at the invocation of a method 53
4.10 Execution stack during method entry and at the exit of a method 54
4.11 Execution stack at the return entry to the interpreter 55
4.12 Wrong stack pointer after removal of interpreter frame 57
4.13 The stack changes during an interpreter tail call. 57
4.14 A method invocation is treated as a unit during compilation. 58
4.15 Sibling and non-sibling tail calls . 59
4.16 Handling of non-sibling tail calls . 60
4.17 The compiler generates call sites depending on the possible receiver types 61
4.18 The different states of a static call site . 62

110

List of Figures 111

4.19 The different states of a virtual call site. 64
4.20 Relocation information of a virtual tail call site 66
4.21 Marking methods non-entrant causes static calls to be re-resolved. 66
4.22 Stack frame layout of compiled frames . 69
4.23 State of the stack during a non-sibling tail call (caller’s caller is interpreted) 72
4.24 Interpreted-to-compiled and compiled-to-interpreted transitions 73
4.25 Stack during execution of the c2i tail call adapter runs 75
4.26 A method containing a tail call can’t be inlined 78
4.27 Overview of stack compression process . 85

5.1 Static call with two arguments . 92
5.2 Static call with four arguments . 93
5.3 Static call with six arguments . 93
5.4 Static call with eight arguments . 94
5.5 Non-sibling calls six arguments . 97
5.6 Non-sibling calls eight arguments . 97
5.7 Polymorphic call with two arguments . 98
5.8 Polymorphic call with four arguments . 99
5.9 Polymorphic call with six arguments . 99
5.10 Polymorphic call with eight arguments . 100
5.11 Polymorphic non-sibling calls with eight arguments 101

A Bibliography

[1] Ole Agesen. GC points in a threaded environment. Technical report, Sun Microsys-
tems, Inc., Mountain View, CA, USA, 1998.

[2] Ole Agesen and David Detlefs. Mixed-mode bytecode execution. Technical report,
Sun Microsystems, Inc., Mountain View, CA, USA, 2000.

[3] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ramakrishna, and
Derek White. An efficient meta-lock for implementing ubiquitous synchronization.
In Proceedings of the ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, pages 207–222, New York, NY, USA, 1999.
ACM.

[4] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin locks:
Featherweight synchronization for Java. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 258–268,
New York, NY, USA, 1998. ACM.

[5] Andreas Bauer. Übersetzung funktionaler Sprachen mittels GCC - Tail Calls. Mas-
ter’s thesis, Technische Universität München, 2003.

[6] Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML to
Java bytecodes. In Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, pages 129–140, New York, NY, USA, 1998. ACM.

[7] Per Bothner. The Kawa language framework.
http://www.gnu.org/software/kawa/.

[8] Don Box and Ted Pattison. Essential .NET: The Common Language Runtime.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[9] Gilad Bracha and Graham Hamilton. JSR 202: classfile specification update.
http://jcp.org/en/jsr/detail?id=202. Sun Microsystems, Inc., 2006.

[10] Gregory J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings
of the ACM SIGPLAN Symposium on Compiler Construction, pages 98–105, New
York, NY, USA, 1982. ACM.

[11] C.J. Cheney. A nonrecursive list compacting algorithm. Communications of the
ACM, 13(11):677–678, 1970.

112

A Bibliography 113

[12] John Clements and Matthias Felleisen. A tail-recursive machine with stack inspec-
tion. ACM Transactions on Programming Languages and Systems, 26(6):1029–1052,
2004.

[13] Xavier Clerc. Ocaml-java project. http://ocamljava.x9c.fr.

[14] Clifford N. Click. Combining analyses, combining optimizations. PhD thesis, Rice
University, Houston, TX, USA, 1995.

[15] Clifford N. Click and Michael Paleczny. A simple graph-based intermediate repre-
sentation. In Papers from the ACM SIGPLAN Workshop on Intermediate Repre-
sentations, pages 35–49, New York, NY, USA, 1995. ACM.

[16] William D. Clinger. Proper tail recursion and space efficiency. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 174–185. ACM, 1998.

[17] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, 1991.

[18] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proceedings of the European
Conference on Object-Oriented Programming, pages 77–101, London, UK, 1995.
Springer-Verlag.

[19] David Detlefs and Tony Printezis. A generational mostly-concurrent garbage col-
lector. Technical report, Sun Microsystems, Inc., Mountain View, CA, USA, 2000.

[20] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems, 9(3):319–349, 1987.

[21] Stephen J. Fink and Feng Qian. Design, implementation and evaluation of adaptive
recompilation with on-stack replacement. In Proceedings of the International Sym-
posium on Code Generation and Optimization, pages 241–252, Washington, DC,
USA, 2003. IEEE Computer Society.

[22] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. JavaTMLanguage Specifica-
tion, The 3rd Edition. Addison-Wesley Professional, 2005.

[23] Robert Griesemer. Generation of virtual machine code at startup. OOPSLA99
Workshop on Simplicity, Performance and Portability in Virtual Machine Design,
1999.

[24] Jr. Guy L. Steele. Debunking the “expensive procedure call” myth or, procedure call
implementations considered harmful or, lambda: The ultimate goto. In Proceedings
of the 1977 annual conference, pages 153–162, New York, NY, USA, 1977. ACM.

A Bibliography 114

[25] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 4 edition, 2007.

[26] Rich Hickey. Clojure. http://clojure.org.

[27] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In Proceedings of the
European Conference on Object-Oriented Programming, pages 21–38, London, UK,
1991. Springer-Verlag.

[28] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with
dynamic deoptimization. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 32–43, New York, NY,
USA, 1992. ACM.

[29] Erik Huelsmann and al. Armed bear common lisp.
http://common-lisp.net/project/armedbear.

[30] Jim Hugunin, Barry Warsaw, Samuele Pedroni, Brian Zimmer, and Frank
Wierzbicki. The jython project. http://www.jython.org.

[31] Intel Corporation. Intel IA-32 Architecture Software Developerś Manual: Basic
Architecture, 2003.

[32] Dierk Koenig, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet.
Groovy in Action. Manning Publications Co., Greenwich, CT, USA, 2007.

[33] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Ro-
driguez, Kenneth Russell, and David Cox. Design of the Java HotSpotTM client
compiler for Java 6. ACM Transactions on Architecture and Code Optimization,
5(1):1–32, 2008.

[34] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign, Ur-
bana, IL, Dec 2002. http://llvm.org.

[35] Xavier Leroy. Java bytecode verification: An overview. In Proceedings of the Inter-
national Conference on Computer Aided Verification, pages 265–285, London, UK,
2001. Springer-Verlag.

[36] John Levon. OProfile manual. Victoria University of Manchester, 2004.
http://oprofile.sourceforge.net/doc/index.html.

[37] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the
lifetimes of objects. Communications of the ACM, 26(6):419–429, 1983.

[38] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[39] Microsoft Corporation. NET Framework 3.5, February 2009.
http://msdn.microsoft.com/en-us/library/w0x726c2.aspx.

A Bibliography 115

[40] Scott G. Miller. Sisc: A complete Scheme interpreter in Java. Technical report,
2003.

[41] Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997.

[42] Charles Nutter, Thomas Enebo, Ola Bini, and Nick Sieger. Jruby.
http://jruby.codehaus.org.

[43] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubo-
chet, Burak Emir, Sean McDirmid, Stéphane Micheloud, Nikolayv Mihaylo, Michel
Schinz, Erik Stenman, Lex Spoon, and Matthias Zenger. An overview of the Scala
programming language. Technical Report IC/2004/64, EPFL Lausanne, Switzer-
land, 2004.

[44] Michael Paleczny, Christopher Vick, and Clifford N. Click. The Java
HotSpotTMserver compiler. In Proceedings of the Symposium on JavaTMVirtual
Machine Research and Technology Symposium, pages 1–12, Berkeley, CA, USA,
2001. USENIX Association.

[45] Eduardo Pelegŕı-Llopart and Susan L. Graham. Optimal code generation for ex-
pression trees: an application burs theory. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 294–308, New
York, NY, USA, 1988. ACM.

[46] Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig. C–: A portable assem-
bly language that supports garbage collection. In Proceedings of the International
Conference on Principles and Practice of Declarative Programming, pages 1–28,
London, UK, 1999. Springer-Verlag.

[47] Mark Probst. Proper tail recursion in C. Master’s thesis, Technische Universität
Wien, 2001.

[48] Eva Rose. Lightweight bytecode verification. J. Autom. Reason., 31(3-4):303–334,
2003.

[49] John Rose. Da Vinci Machine project, February 2009.
http://openjdk.java.net/projects/mlvm/.

[50] Michel Schinz and Martin Odersky. Tail call elimination on the Java Virtual Ma-
chine. In Proceedings of the ACM SIGPLAN BABEL Workshop on Multi-Language
Infrastructure and Interoperability, pages 155–168. Elsevier, 2001.

[51] Michael D. Schroeder and Saltzer Jerome H. The protection of information in
computer systems. In Proceedings of the IEEE, volume 63, pages 1278– 1308. IEEE
Computer Society, 1975.

[52] Manuel Serrano and Pierre Weis. Bigloo: A portable and optimizing compiler for
strict functional languages. In Proceedings of the Second International Symposium
on Static Analysis, pages 366–381. Springer-Verlag, 1995.

A Bibliography 116

[53] IEEE Computer Society. IEEE Standard for the Scheme Programming Language.
The Institute of Electrical and Electronic Engineers, Inc., New York, USA, ieee std
1178-1990 edition, 1991.

[54] Toshio Suganuma, Takeshi Ogasawara, Mikio Takeuchi, Toshiaki Yasue, Motohiro
Kawahito, Kazuaki Ishizaki, Hideaki Komatsu, and Toshio Nakatani. Overview of
the IBM Java just-in-time compiler. IBM Systems Journal, 39(1):175–193, 2000.

[55] David Tarditi, Peter Lee, and Anurag Acharya. No assembly required: Compil-
ing Standard ML to C. ACM Letters on Programming Languages and Systems,
1(2):161–177, 1992.

[56] David Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, pages
157–167, New York, NY, USA, 1984. ACM.

[57] Dan. S Wallach and Edward W. Felten. Understanding Java stack inspection. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 52–63. IEEE
Computer Society, 1998.

[58] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of the
International Workshop on Memory Management, pages 1–42, London, UK, 1992.
Springer-Verlag.

[59] Christian Wimmer and Hanspeter Mössenböck. Optimized interval splitting in a
linear scan register allocator. In Proceedings of the ACM/USENIX International
Conference on Virtual Execution Environments, pages 132–141, New York, NY,
USA, 2005. ACM.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe.

117

	Introduction
	Target for Programming Language Implementations
	Context
	Tail Call Optimization
	Problem Statement
	Structure of the Thesis

	Tail Call Optimization
	Example
	Normal Method Call Sequence
	Tail Call Conditions
	Tail Call Optimized Method Sequence
	Motivation
	Approaches in Uncooperative Environments
	Definition

	Java HotSpot1.21™ VM
	Java Virtual Machine
	Abstract Execution Model
	Java HotSpot1.21™ VM
	Runtime
	Interpreter
	Client Compiler
	Server Compiler

	Implementation
	Target Hardware Platform
	Bytecode Instruction Set Changes
	Bytecode Verifier
	Method Invocation Overview
	Method Abstraction
	Access Security Mechanism
	Interpreter
	Dispatch of 'wide' Templates
	Interpreter Execution Environment
	Interpreter Method Execution

	Compiler
	Sibling and Non-Sibling Tail Calls
	Call Sites in Compiled Code
	Resolving a Call
	Dispatch Stubs
	Frame Layout and Calling Convention
	Method Entry Points
	Compiled to Interpreted Transitions
	Client Compiler
	Server Compiler
	Stack Compression

	Jumping Tail Calls
	Optimizing Sibling Calls

	Evaluation
	Program
	Static Sibling Calls
	Non-Sibling Calls
	Polymorphic Calls
	Stack Compression

	Related Work
	Conclusions
	Bibliography

