
Multi-Level Virtual Machine Debugging using

the Java Platform Debugger Architecture⋆

Thomas Würthinger1, Michael L. Van De Vanter2, and Doug Simon2

1 Institute for System Software
Johannes Kepler University Linz

Linz, Austria
2 Sun Microsystems Laboratories

Menlo Park, California, USA
wuerthinger@ssw.jku.at, michael.vandevanter@sun.com, doug.simon@sun.com

Abstract. Debugging virtual machines (VMs) presents unique chal-
lenges, especially meta-circular VMs, which are written in the same lan-
guage they implement. Making sense of runtime state for such VMs re-
quires insight and interaction at multiple levels of abstraction simultane-
ously. For example, debugging a Java VM written in Java requires under-
standing execution state at the source code, bytecode and machine code
levels. However, the standard debugging interface for Java, which has
a platform-independent execution model, is itself platform-independent.
By definition, such an interface provides no access to platform-specific
details such as machine code state, stack and register values. Debuggers
for low-level languages such as C and C++, on the other hand, have
direct access only to low-level information from which they must syn-
thesize higher-level views of execution state. An ideal debugger for a
meta-circular VM would be a hybrid: one that uses standard platform-
independent debugger interfaces but which also interacts with the exe-
cution environment in terms of low-level, platform-dependent state.
This paper presents such a hybrid architecture for the meta-circular
Maxine VM. This architecture adopts unchanged a standard debugging
interface, the Java Platform Debugger Architecture (JPDA), in com-
bination with the highly extensible NetBeans Integrated Development
Environment. Using an extension point within the interface, additional
machine-level information can be exchanged between a specialized server
associated with the VM and plug-in extensions within NetBeans.

1 Introduction

Higher level programming languages are increasingly implemented by a virtual

machine (VM), which is implemented in a lower-level language, which is in turn
compiled into the machine language of each target platform. Standard debuggers
for the VM implementation language, often C or C++, suffice in simple situa-
tions, but not when parts of the VM (for example critical libraries) are written

⋆ This work was supported by Sun Microsystems, Inc.



in the implemented language. This is also the case for applications written in the
JavaTMprogramming language [4] that combine Java and C code via the Java
Native Interface(JNI) [5]. This creates a demand for mixed-mode debuggers that
support both languages: implementation and implemented.

The debugging challenge is even more complex and subtle for meta-circular
VM implementations where the implementation and implemented languages are
one and the same. A solution requires what we call multi-level debugging. A VM
developer would like to debug at the source-level of the implementation language,
but since that language is also being implemented by the VM, one must often
drop to a lower level: the machine language of the platform into which the
implementation is compiled. At this lower level one must be able to examine
every aspect of machine state (registers, stacks, data layouts, compiled code,
etc.) and to interpret that state in terms of the implementation language, even
when the implementation may be broken. Such a tool is necessarily specialized,
with the consequence that the many advantages of debugging with a modern
Integrated Development Environment (IDE) are unavailable.

For example, the Maxine Inspector is a multi-level debugger that is of ne-
cessity highly specialized for the meta-circular Maxine Virtual Machine [6], for
which Java is both the implementation and implemented language. The Maxine
Inspector is an out-of-process, machine-level debugger that has the additional
ability to interpret machine data at multiple levels of abstraction; it does this
through extensive code sharing with and knowledge of the Maxine VM imple-
mentation. For example, Java objects can be viewed either abstractly or in terms
of a concrete memory layout that may vary across implementation platforms and
VM configurations. Java methods can be viewed as source code, bytecodes, or
machine code produced by one of Maxine’s compilers. Register values and mem-
ory words can be interpreted either as bits, as primitive values, as addresses,
or as pointers to known Java objects. Figure 1 shows a Java object and a Java
method, each viewed in both in source- and machine-level representations.

There are Java debuggers as well as machine code debuggers, but to the
best of our knowledge, no system successfully combines both worlds as does the
Maxine Inspector. The original Inspector, however, stood alone and lacked both
the productivity features and sophisticated user interface that Java programmers
expect. As an alternative to replicating those advantages, we explored integrating
the core of the Inspector, the out-of-process Inspector Debugging Agent that
reads and interprets machine state, with the extensible NetBeans IDE [14].

This has been made possible through development of a new framework for
integration that depends on NetBeans support for the Java Platform Debugger

Architecture (JPDA) [13], which specifies contracts between a Java VM and a
Java debugger. This framework depends on JPDA’s Java Debug Interface (JDI)
[11] and uses JPDA’s Java Debug Wire Protocol (JDWP) [12] to communicate
with the debugged process over a network stream. This approach emphasizes
Java-level functionality and is extended when needed for displaying additional
machine-level information. A new “protocol within the JDWP protocol” enables



Fig. 1. Multiple view levels on a Java object and Java code during debugging.

the transfer of extended kinds of information via JDWP, a technique of general
interest to VM developers seeking such extensions to debugging support.

Section 2 introduces this technique in the context of the Maxine VM and
Inspector. Section 3 describes the extended JDWP server implementation added
to the Inspector, along with a new mechanism using Java dynamic proxy classes
[10] to transmit additional information via the unchanged JDWP protocol. Sec-
tion 4 shows how a new “protocol with the JDWP protocol” communicates with
NetBeans, in particular with plug-in extensions that allow the debugger to use
the mechanism. Section 5 comments on the advantages of this approach, Section
6 reviews related work, and Section 7 concludes.

2 System Architecture

The Maxine Inspector requires almost no active support from the Maxine VM;
this is necessary because there is no separate implementation language whose
own implementation can be relied upon. The Inspector runs in its own pro-
cess, reads VM memory via inter-process communication, and implements basic
debugging commands by managing the VM process. The original Inspector in-
ternally comprises two software layers: an agent that both communicates with
the VM and interprets its state, and a front end that adds graphical views and
user interaction.

The alternative architecture developed for multi-level Maxine debugging with
NetBeans uses JDWP: an asynchronous protocol that defines a standard for
communication between Java debugger and VM. Important JDWP command
groups are:

– VirtualMachine: get general information, loaded classes, current threads.
– ReferenceType: reflective information about types, class fields and methods.



– ObjectReference: retrieve the values of an object; invoke an instance method.
– ThreadReference: get data about the current call stack and thread status.
– EventRequest : install callbacks for events, e.g. class loading and breakpoints.

The Java Platform Debugger Architecture specifies how a Java debugger, using
a standard interface (JDI) and wire protocol (JDWP), can connect to a remote
server for debugging Java programs via a network connection.

Figure 2 shows how Maxine system components interact in this architecture;
new components are dark gray, and the others are unchanged. The new Max-
ine JDWP Server delegates commands to the existing Maxine Inspector Agent.
New plugins extend the NetBeans debugger and communicate directly with the
JDWP server. These plugins use both the standard JDWP protocol and a new
technique, described in Section 4, to access additional information not directly
supported by JDWP. Examples of such information include the address of ob-
jects in memory and compiled machine code for a Java method.

3 The Maxine JDWP Server

Most JDWP commands are queries from the client (debugger) that produce an-
swers from the server (agent), for example to gather information about loaded
classes and thread state. Events that originate in the VM are transmitted to
the client only when the client has registered for the events with a JDWP com-
mand. Current Maxine VM limitations delayed a complete implementation of
the JDWP protocol by the server, but the implemented subset already suffices
for debugging the Maxine VM using NetBeans.

In addition to standard Java debugging operations, the Maxine JDWP Server
can set machine code breakpoints, perform a machine code single-step, examine
memory contents, and more. When a breakpoint is reached, the server transmits
information about threads and their instruction pointers. The NetBeans debug-
ger always needs a correct Java bytecode position, which is then matched back
to the source code and highlighted as the current line in the program. The server
calculates the bytecode position based on the current machine code address; the
position can be either exact or approximate, depending on which Maxine com-
piler produced the code. For setting a breakpoint in the Java source code, the
server performs the reverse approximation, because the command sent by the
client Java debugger contains the bytecode location only.

Fig. 2. System architecture.



The Maxine JDWP Server holds information about all loaded classes. Re-
quests for object field access are delegated to the Maxine Inspector Agent, which
reads the raw bytes and converts them, if possible, to valid JDWP types. This al-
lows IDE windows that display watch expressions and local variables to work as
expected. Current implementation restrictions in the Inspector Agent prevent
evaluation of method calls in watch expressions, but all other kinds of watch
expressions work as expected.

The Maxine JDWP Server creates artificial fields for the transmission of ad-
ditional, implementation-related information about Java objects. It can do this
because the server controls class layout information transmitted to the client.
Requests for read access to artificial fields are handled directly by the server,
whereas access to other fields requires reading from VM memory via the Inspec-
tor Agent. Figure 3 shows an example Java object and how it would appear in
the debugger client. At this time the server simulates fields for the address and
the header word of an object, both of which are machine-level VM implemen-
tation artifacts. The server also simulates a field that points to an object’s hub:
a Maxine VM implementation object describing the type and other meta-data
related to the object. The client debugger requires no modification to display
artificial fields, since they appear as ordinary Java fields.

Fig. 3. Artificial object fields help transmitting additional information about objects
to the debugger.



Fig. 4. Code example for the Java dynamic proxy mechanism combined with JDWP.

4 A Protocol within the JDWP Protocol

Although artificial fields permit the display of additional information about ob-
jects without modification to the JDWP debugger client, a more general mech-
anism is also needed. This is done without change to the protocol by leveraging
the JDWP invoke command, which was originally intended to support method
calls in watch expressions. Java’s dynamic proxy mechanism [10] makes it pos-
sible to create proxy objects behind an interface, objects that delegate method
calls to JDWP invoke commands. The Maxine JDWP Server creates artificial

methods that provide access to machine-level information via reflective delega-
tion to appropriate methods in the Inspector Agent. The net effect is a kind



of specialized “remote method invocation” available to the client through an
interface.

Code samples in Figure 4 show how the dynamic proxy mechanism is im-
plemented. Interface A is defined on both server and client. On the server it is
implemented by class AImpl; on the client a dynamic proxy object is created. The
client-side proxy implements the interface InvocationHandler, which allows the
delegation of Java calls; it delegates method calls to the invoke method.

Figure 5 diagrams the interaction among objects in this architecture. The
client implements the interface with a Java dynamic proxy object; it is based
on a JDI Object Reference to which it delegates method calls. This JDI Object
Reference is also known to the NetBeans Debugger and can be referenced in
JDWP commands. The Maxine JDWP Server delegates invoke commands on
a specific JDWP ID to the corresponding Java object. In conventional usage,
server-side invoke commands are delegated to the VM via the Inspector Agent,
but in this case they are redirected via reflective call to the implementer of the
interface. Glue code for these interactions is automated, so neither the user of
the interface nor the implementer need any special handling.

Fig. 5. Dynamic proxy objects for implementing a protocol within the protocol.

Three important optimizations address performance concerns:

– State Change: The client normally presumes that a conventional JDWP
invoke invalidates previously retrieved VM state. We can guarantee, how-
ever, that an invoke on an artificial method in the Maxine JDWP Server
executes no VM code. In these cases Java reflection is used to bypass the
built-in refresh mechanisms of JDI, thus avoiding unnecessary overhead on
the client.



– Multiple Objects: Although transmitting data is typically fast, the round
trip needed to perform a JDWP invoke is not. Some return values (e.g.
the information about all registers of a thread) are represented by multiple
objects, and transmitting them individually could introduce undesirable la-
tency. Such values are instead returned from server to client as a unit: a byte
array containing the serialized data needed to reconstruct the object graph.

– Cache: Many of the interface methods used in this architecture are guaran-
teed to return the same result when called with the same parameters. The
client further optimizes network traffic by caching these results, based on
annotations applied to such methods. This grants client side implementa-
tions the freedom to invoke remote commands without undue performance
concerns.

This approach, by virtue of specialization, has advantages over Java RMI or
other Java remote technologies in this context:

– It shares an existing JDWP network connection.
– Interfaces can be used to extend standard JDWP objects. For example, a

special interface adds methods to a thread object that provide access to
register state.

– JDWP objects can appear as method parameters and return types.

Fig. 6. Example sequence of a call to an interface.



Figure 6 diagrams the interactions that follow when the client invokes an
artificial method on the Maxine JDWP Server. The client’s dynamic proxy im-
plements the call, checking first whether the result is cached and can be returned
immediately. If not cached, the client marshalls parameters as JDI values for
transmission via JDWP invoke. Primitive types are marshalled by encapsula-
tion in a JDI data object, reference types by JDWP identifiers managed on the
server. Array types are simply copied to the server and filled with marshalled
primitive or reference values.

The Maxine JDWP Server first unmarshalls the invoke parameters, using
a map to convert JDWP identifiers to object references. The call is then dele-
gated via Java reflection to the implementer of the interface. Finally the server
marshalls the return value into a JDWP value for return to the client.

The client’s dynamic proxy receives the return value as a JDI object and
converts it to a Java object. In case of an array this can again require additional
JDWP commands to retrieve array contents. In case of a byte array containing
the serialized form of a Java object, the bytes are retrieved and deserialized. The
original caller receives a normal Java object in return without special treatment.

Fig. 7. Screenshot of the enhanced NetBeans debugger showing both machine code
and Java source code position.

5 Status and Results

The architecture of our approach makes it possible for any client that imple-
ments JDWP to debug the Maxine VM at the Java-level. Multi-level debugging,
however, requires additional functionality, for which we chose to extend Net-
Beans. NetBeans already implements JDWP, has a flexible plugin architecture,



and provides standard techniques for extending debugger functionality without
modification.

Our approach succeeds in making it simple to transport additional informa-
tion between the Maxine Inspector Agent and the NetBeans IDE. Client-side
code for displaying data can use simple interfaces that are implemented on the
server. The Java dynamic proxy mechanism hides the complications implied by
data marshalling and unmarshalling to transmit the data over the network.

The Maxine JDWP server implements both a useful subset of the standard
source-level JDWP protocol and access to the VM’s machine-level state. We have
prototyped additional machine-level views; Figure 7 shows NetBeans debugging
the Maxine VM with these extensions enabled. The Java-level call stack, local
variables, and current position in Java code appear in NetBeans components. The
Maxine Code View highlights the current machine code location based on the
current position in Java code. Also shown are register contents for the currently
selected thread. The address of each Java object appears in an artificial field, and
this address can be used to retrieve the raw memory contents at that location.

The full reuse of the NetBeans Java debugger frees us from implementing
many concepts that are part of a modern Java debugger, and ensures ongoing
benefit as NetBeans evolves. On the other hand, it remains to be seen whether
the tight integration among views at different levels of abstraction will be as easy
as it has been in the specialized Maxine Inspector. Implementing the prototype
described here has already required the use of Java reflection in order to access
NetBeans functionality for which no public API is provided. This difficulty is not
a limitation of the transport architecture described in this paper, but rather the
nature of an IDE for which this type of extension was perhaps not anticipated.

The prototype described here is integrated into the Maxine open source
project. We plan to continue exploring this approach to multi-level debugging
for the Maxine VM with work on additional components and mutli-level views.

6 Related Work

Ungar et al. developed a meta-circular VM for the Self programming language
[15], which they debugged with a debug server written in C++. Remote debug-
ging in Self relies upon a custom network protocol as well as a custom debugger.

The meta-circular Jikes Research Virtual Machine is also written in Java [1];
it uses a remote reflection technique for accessing VM data that is similar to ours
[7]. The Jikes debugger itself however, is not based on an existing Java debugger.

Simon et al. [9] developed the Squawk VM, a small Java VM written mostly
in Java that runs on a wireless sensor platform. Squawk includes a debug agent
that implements a subset of JDWP, but there are no extensions of the sort that
permit multi-level debugging.

Printezis and Jones created GCspy framework for the analysis of VM mem-
ory management behavior [8]. They considered and rejected using an enhanced
version of JDWP for transmitting their data for two reasons: GCspy data has
nothing to do with debugging, the focus of the JDWP protocol, and its use would



needlessly confine GCspy technology to Java applications. These, however, are
actually advantages in the context of Maxine debugging.

Dimitriev extended the JDWP protocol with additional commands for re-
defining classes in the VM [2][3]. Although this approach is reasonable for func-
tionalities that are of general interest for virtual machines, it would complicate
the protocol significantly in our case. By defining a protocol within the JDWP
protocol, we retained flexibility and avoided the need for further standardization.

7 Conclusions

Multi-level debugging for a meta-circular VM presents technical challenges that
are not easily met with conventional development tools, even mixed-mode tools
designed to support multiple languages. Faced with the choice between the de-
velopment cost of a specialized, isolated tool (our original approach), and the
challenges of directly extending an existing IDE, we have explored an alternate
approach. Leveraging a single-level standard architecture (JPDA) for remote de-
bugging, we were able to transport information at additional levels of abstraction
by implementing a remote invocation protocol within the JPDA’s Java Debug-
ging Wire Protocol (JDWP). The advantages of this approach, prototyped using
the Maxine Inspector Agent on the server side and NetBeans as the client, are
that a wide array of rich functionality becomes available for debugging the Max-
ine VM at the Java-level. This dramatically reduces Maxine development cost
for this level of functionality, both present and future as the NetBeans platform
evolves.

Solving the transport problem, however, is only part of the solution. The next
challenge is to provide the advantages of tightly integrated multi-level views,
easily developed in the stand-alone Maxine Inspector, in a rich platform that
was originally designed for single-level debugging.

8 Acknowledgements

The authors would like to thank Maxine team members Ben Titzer and Bernd
Mathiske for their support and many helpful suggestions.

References

1. Alpern, B., Attanasio, C.R., Cocchi, A., Hummel, S.F., Lieber, D., Mergen, M.,
Shepherd, J.C., Smith, S.: Implementing jalapeño in Java. In: OOPSLA ’99: Pro-
ceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, ACM Press (1999) 314–324

2. Dmitriev, M.: Safe class and data evolution in large and long-lived JavaTM appli-
cations. Technical report, Sun Microsystems Laboratories (2001)

3. Dmitriev, M.: Towards flexible and safe technology for runtime evolution of Java
language applications. In: Proceedings of the Workshop on Engineering Complex
Object-Oriented Systems for Evolution, in association with OOPSLA 2001 Inter-
national Conference. (2001)



4. Gosling, J., Joy, B., Steele, G., Bracha, G.: JavaTM Language Specification, The
(3rd Edition) (Java Series). Addison-Wesley Professional (2005)

5. Liang, S.: The Java Native Interface: Programmers Guide and Specification.
Addison-Wesley Publishing Co., Inc. (1999)

6. Mathiske, B.: The maxine virtual machine and inspector. In: OOPSLA Compan-
ion ’08: Companion to the 23rd ACM SIGPLAN conference on Object oriented
programming systems languages and applications, ACM (2008) 739–740

7. Ngo, T., Barton, J.: Debugging by remote reflection. In: Proceedings of Euro-Par
2000 - Parallel Processing, Springer LNCS (2000) 1031–1038

8. Printezis, T., Jones, R.: Gcspy: an adaptable heap visualisation framework. In:
OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, ACM (2002) 343–358

9. Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: JavaTM on the bare
metal of wireless sensor devices: the squawk Java virtual machine. In: VEE ’06:
Proceedings of the 2nd international conference on Virtual execution environments,
ACM (2006) 78–88

10. Sun Microsystems, Inc.: Java Dynamic Proxy Classes. (1999)
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/proxy.html.

11. Sun Microsystems, Inc.: Java Debug Interface. (2004)
http://java.sun.com/javase/6/docs/jdk/api/jpda/jdi/index.html.

12. Sun Microsystems, Inc.: Java Debug Wire Protocol. (2004)
http://java.sun.com/javase/6/docs/technotes/guides/jpda/jdwp-spec.html.

13. Sun Microsystems, Inc.: Java Platform Debugger Architecture. (2004)
http://java.sun.com/javase/6/docs/technotes/guides/jpda/.

14. Sun Microsystems, Inc.: NetBeans. (2009) http://www.netbeans.org.
15. Ungar, D., Spitz, A., Ausch, A.: Constructing a metacircular virtual machine in

an exploratory programming environment. In: OOPSLA ’05: Companion to the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, ACM (2005) 11–20


