

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

Author

Lukas Aichhorn

Submission

Institute for System
Software

Thesis Supervisor

Dipl.-Ing. Dr. Markus

Weninger, BSc

October 2023

Visual Studio Code Extension

for Siemens G-Code

Bachelor’s Thesis

to confer the academic degree of

Bachelor of Science

in the Bachelor’s Program

Informatik

Bachelor's Thesis

Sinumerik VS Code Extension

Student: Lukas Aichhorn

Advisor: Dipl.-Ing. Dr. Markus Weninger, Bsc

 Company Advisor: Gerald Kettl, Fa. Fill

Start date: March 2023

Mit Hilfe eines VS Code Plugin soll eine zeitgemäße Entwicklungsumgebung für Siemens Sinumerik
Steuerungen geschaffen werden.
Alle systemrelevanten Funktionen, Operanden, Maschinendaten und Variablen sollen in diesem Plugin
per IntelliSense angeboten werden und der Syntax farblich hervorgehoben werden.
Über Tooltips soll bei Verwendung der Funktionen, Maschinendaten und Variablen im Code eine
entsprechende Hilfe angeboten werden.
Über „Dokument formatieren“ soll eine automatische Formatierung hinsichtlich Zeilenumbrüche und
Einzüge bei Verschachtelungen und Leerzeichen vor und nach Operanden erfolgen. Außerdem soll
eine Prüfung auf den Fill NcStyleGuide erfolgen.
Beim VSCode-Befehl „Ausführen und Debuggen“ soll die gesamte Syntax des Workspace geprüft
werden. Anschließend findet eine Synchronisierung zwischen Workspace am Programmiergerät und
dem Workspace in der Steuerung statt.

Auflistung der einzelnen Aufgabenpunke:
 Erhebung der Daten aus der offiziellen Dokumentation und Siemensdateien (Funktionen,

Operanden, Maschinendaten, Variablen,…)

 Erstellung eines Parser zum einlesen der Daten

 Grammatik für die Sprache erstellen

 Syntax Highlighting

 Tooltips

 Dokument formattieren

 Workspace auf Grammatik prüfen (“Syntaxfehlererkennung”)

 Synchronisation per SSH mit der Steuerung

 Obfuskierung der Extension

Modalities:
The progress of the project should be discussed at least every four weeks with the advisor. A time schedule and a milestone
plan must be set up within the first 3 weeks and discussed with the advisor. It should be continuously refined and monitored to
make sure that the thesis will be completed in time. The final version of the thesis must be submitted not later than
31.08.2023.

Dipl.-Ing. Dr. Markus Weninger, BSc

Institute for System Software

T +43-732-2468-4361

markus.weninger@jku.at

Abstract

Visual Studio Code (VS Code) can be a powerful and versatile code editor. However, Microsoft
achieves this by using so-called extensions. Extensions are small modular programs with which
you can easily customise your editor. Nevertheless, this system can have a big flaw – the lack of
an extension for your particular needs. Since this becomes apparent when working with G-Code
while using VS Code, this thesis will attempt to create an extension that remedies this issue and
supports any developers working with this language in as many ways as possible.

Kurzfassung

Visual Studio Code (VS Code) kann ein extrem mächtiger und vielseitiger Code Editor sein.
Dies ist jedoch nur realisiert durch sogenannte Extensions. Extensions sind kleine modulare
Programm, mit deren Hilfe man seinen Editor exakt nach seiner Vorstellung gestalten kann.
Trotzdem kann dieses System große Fehler aufweisen – durch das Fehlen von Extensions, welche
die geforderten Bedürfnisse abdecken. Da dies beim Arbeiten mit G-Code auffällig wird, versucht
diese Arbeit eine Extension zu erstellen, welche dieses Problem behebt und alle Entwickler welche
mit dieser Sprache arbeiten unterstützt.

i

Table of Content

Contents

Abstract i

Kurzfassung i

1 Introduction 1

2 Background 3
2.1 G-Code . 3
2.2 Obfuscation . 3
2.3 VS Code and the VS Code API . 3

2.3.1 Command Registering . 3
2.3.2 Events . 3
2.3.3 Providers . 4

2.4 Regex . 4
2.5 Compiler-construction basics . 5

2.5.1 EBNF . 5
2.5.2 Tokens . 6
2.5.3 Grammars . 6
2.5.4 Coco . 6

3 Web Scraper 8
3.1 Siemens Website . 8
3.2 Documentation Files . 9

4 Extension Initialisation and Packaging 11
4.1 yeoman and creating a VS Code Extension . 11
4.2 Extension packaging and vsce . 12

5 Providers 14
5.1 General Providers . 14
5.2 Hover Provider . 14
5.3 DocumentFormattingEdit Provider . 15
5.4 Definition Provider . 16

6 Tokenising 18
6.1 Regex Approach . 18

6.1.1 Tokenising using Textmate Grammars with Regex 18
6.1.2 Problems with the Regex Approach . 19

6.2 Grammar Approach . 19
6.2.1 G-Code Grammar . 19

6.3 Theming . 21

ii

7 Overall Architecture 23

8 Usage 25

9 Conclusions and Future Work 27

Literature 29

iii

1 Introduction

VS Code can be a potent tool for every developer since it offers many advantages over other
editors. The most important one is its modularity. With the help of plugins, this enables VS
Code to be the most versatile code editor, which allows developers to customise VS Code. Yet
customisation is not the only advantage this brings. Furthermore, plugins enable VS Code to
work with any Language that has a plugin developed - in contrast to most viable competitors,
which only specialise their editor for a single language.

However, despite VS Code offering tens of thousands of plugins, every plugin offered for
G-Code is very lacklustre, with either limited features or very buggy implementations. Because
of this, using VS Code while developing G-Code can be very frustrating and inefficient since a
good code editor can massively boost productivity and may even reduce the occurrence of errors
in your code. Therefore, this thesis will focus on creating a new plugin for Siemens G-Code to
solve the problem of inadequate plugins.
Our contributions encompass:

• a web scraper which generates data from the official Siemens documentation sources

• custom providers which generate workflow-supporting features

• a Regex-based approach to tokenising and syntax highlighting

• the attempt at creating a grammar from which you can generate a Scanner and a Parser
to gain an improved syntax highlighting experience and further introduce a syntax error
reporting system

1

2 Background

2.1 G-Code

G-Code is a language mostly for computer-aided manufacturing, e.g. in 3D printing, but more
prevalent in machines to instruct a cutting tool where to move and when to cut. Furthermore,
G-Code has many implementations, and one of the most commonly used is Siemens Sinumerik. [7]

Because of the age of this language, G-Code still uses GO-TO statements to write reusable
code. This concept works by creating a named label; whenever you want to execute this code, you
"jump" to the position the label is at, and the machine runs the code. Despite this usefulness,
one should use GO-TO statements with care since they can lead to horrible code if a programmer
abuses them.

2.2 Obfuscation

Obfuscation is a potent tool for any developer or company trying to protect their source code.
Obfuscation is a concept that takes your existing readable source code and makes it unreadable
to the human eye. Most of the time, this is achieved by renaming variables to something random,
refactoring the code to a singular line and sometimes introducing random method calls that do
not affect the code but complicate the execution path for anyone trying to decipher your code.

2.3 VS Code and the VS Code API

VS Code is a prominent source code editor developed with the electron framework. This is
important because this means we must develop the plugin in JavaScript or TypeScript. As a
result, the VS Code API is also written in the same languages. [2] Because of personal preferences,
the plugin was developed in Typescript.

The VS Code API is extensive and contains hundreds, if not thousands, of different methods
for any plugin. While this may seem intimidating, the documentation by VSCode makes working
with the API very intuitive. [5] Also, the most important concepts for this thesis are events,
command registering and providers, which are the only ones we will discuss in detail.

2.3.1 Command Registering

Command registering is essential for any feature that has to be activated by the user and should
not work automatically, e.g. activating a feature via a shortcut key. Command registering works
by first declaring the name of your command into the package.json file. Afterwards, the plugin’s
source code must register the command with the VS Code API while the extension is activated.
Consequently, the editor recognises the command, enabling the user to execute it willingly.

2.3.2 Events

Events are also crucial to working with the VS Code API since this enables developers to react
to user input. The names of the events follow the pattern "on[Will|Did]VerbNoun?" and cover
any possible user input to trigger the event.

3

2.3.3 Providers

We use Providers for communicating back to the VS Code API to get the desired results. Once
a provider registers with the API, it may be triggered automatically or manually via an event,
depending on the type of provider that is needed or used. Once a provider is triggered, it will
call a designated function assigned while registering. After calling the method, most Providers
will return a value. Next, this value is passed to the API, which then handles further processing
for you.

2.4 Regex

Regular expressions, more commonly known as Regex, are an important concept in computer
science. Regex are a set of rules which let you specify patterns to find matching patterns in a
string. For our purposes, we will only need basic regex concepts.

Figure 1: The most important basic regex rules.[3]

It is possible to match nearly every text pattern using the rules from Figure 1.

4

Figure 2: a simple regex example with the matches in the test string highlighted in blue. [3]

Figure 2 shows a small example of using a regex. The square brackets indicate a set, and the
plus sign indicates one or more matches in a matching group. Furthermore, using these concepts,
one can create regexes that match entire sentences or are as precise as required.

2.5 Compiler-construction basics

2.5.1 EBNF

The Extended Backus Naur Form, more commonly known as EBNF, is a set of rules to specify
a grammar.

Figure 3: The EBNF rules as proposed in an ISO standard. [6]

Conceptually, EBNF and Regex are not too far apart; computer scientists can use both to
"split up" text in a certain way and extract information.

5

2.5.2 Tokens

However, EBNF does not try to produce matches but tokens. Tokens are small elementary strings
that have a unique assigned meaning. Programs then further process these tokens to map input
to certain predefined token classes.

2.5.3 Grammars

However, a program must have a predefined grammar to use the full extent of tokens. A Grammar
is an instruction on how to form valid sentences in a (in our case) programming language. To
accomplish this a, grammar consists of multiple productions. A single production can consist of
either Terminal Symbols i.e. other productions or Non Terminal Symbols i.e. atomic Tokens.

Figure 4: A small example for a valid example grammar.

In addition, there are also Attributed Grammars or ATGs, which are used to improve
grammars to do further work with results from a given grammar. This works by taking input
values or returning output values for special tokens.

Figure 5: The same as Figure 4 but attributed.

2.5.4 Coco

Coco is a compiler generator which describes a tool that takes an ATG as input and generates
a scanner and a recursive descent parser. This is helpful since after completing the ATG, which
would also be necessary for the manual approach, you can easily use it to do all the work.

6

3 Web Scraper

This section discusses the web scraper we used in conjunction with the extension. Therefore,
it is not part of the extension itself but provides processed data for the extension to process.
Thus, the scraper is only executed when there is a change in the input sources to apply these
differences.

Siemens Website

Scraper
Json Data

Input Data

Provided Data Files

Mapped Text
Files

Extension VS Code
Editor

Start Command
and continuous

User Input

Providers

Data
Processing

This Section is only run
whenever there are
changes in the Input

Sources

Figure 6: A rough overview over the entire system of the extension; the section inside the blue
square represents the entire scraper system.

3.1 Siemens Website

The website contains every single command for the Siemens G-Code Language in a single table.
The idea is to get the Website’s HTML Code, filter the result for the usable sections, and then
store them accordingly.

Figure 7: A small website excerpt with the most important categories. [4]

We realised this by using selenium to open a browser and then a JavaScriptExector since
the table data is loaded dynamically via Javascript and, therefore, unavailable immediately.

8

Next, we navigate the table data using XPATH and depending on the contents, the nodes
are saved to different files for later use. The different types are:

• Operators - a list of all commands considered operators by Siemens that are useful for the
auto-formatting feature

• Descriptions - a file that maps the name of the command to the description given by
Siemens and later provides useful hover information

• TMGrammar - maps every command of the language to a specific group in JSON-Format
together with a basic predefined Regex Structure, which is beneficial for generating the
tokens for the Regex version of Syntax Highlighting

Further detail on each file and how we use them is provided in Section 5 and Section 6.1.

3.2 Documentation Files

Since the website is not exhaustive, we use certain Documentation files to supplement the input
data. There are multiple types of files however, for simplicity and brevity, we are only going to
look at one specific type that is the most general.
The .mdat files (short for machine data) have a specified format being:

Figure 8: Examplary format of a .mdat file.

As a result of this strict formatting, it is relatively easy to write a program that takes all
these files as input and consequently generates more data that is then once again added to the
three files mentioned in section Section 3.1

9

4 Extension Initialisation and Packaging

This section focuses on the fundamental structures of VS Code Extension Development, i.e. how
to start developing your extension using and creating your finished extension after you finish
your development process using vsce.

4.1 yeoman and creating a VS Code Extension

Yeoman is a generator tool that allows developers to quickly and easily generate different code
scaffolds, which enables users to set up projects without having to do much of the often tedious
and complex setup when using multiple tools. It achieves this by applying modular principles to
its generators. Since this means that it should be effortless to create a generator, many languages,
tools and plugins have decided to do so. Hence, VS Code has also created a generator for its
needs. It mainly consists of the build configuration, packaging service and the package manager
[8].

Figure 9: An example of how to generate a new extension using the Yo Code Generator.

For our purposes, creating a new extension will suffice however, there are two main choices:
Whether to use npm or yarn and whether to use webpack or not. While the npm versus yarn
debate is mostly a matter of taste and does not change the extension’s outcome significantly,
using webpack brings the advantage of automatically obfuscating your code (i.e., making your
source code unreadable to the human eye). Obfuscation can be imperative because there are
easy methods to get the source code of any VS Code extension within a few minutes. The
disadvantage is that sometimes webpack can be more confusing, but this should not be an issue
unless you plan to stray from the norm when trying to package.

11

4.2 Extension packaging and vsce

After the development process finishes and your code works, it is time to package your extension
into a format that VS Code can handle to install the extension on any machine. VS Code
recommends using the Visual Studio Code Extension Manager (vsce). The manager runs and
activates scripts already included in the yeoman scaffolding and builds the code into a usable
form for any VS Code user.

Figure 10: An exemplary packaging process using vsce via webpack.

12

5 Providers

Other than Syntax Highlighting, Providers are the centrepiece of any VS Code extension functionality.
The VS Code API uses this concept to let you program in an event-based way all on its own
since, depending on the provider you are implementing, your function is called on its own after
registering itself with the API. This lets you focus on the functionality and makes working with
the VS Code API easy and intuitive.

5.1 General Providers

The general concept of providers is as follows. Each VS Code extension has an extension.ts (or
.js if using JavaScript instead of TypeScript) file, which is the interface between VS Code and
your Extension. Every extension.ts file has an activate function that runs once the extension is
activated. It is here that every provider has to be registered.

Figure 11: An example of how to register a provider.

As seen in Figure 11, registration is accomplished via the languages namespace of the VS
Code API. First, in this example, you call the registerHoverProvider method, which expects the
inputs of ’DocumentSelector’ and ’Provider’. In this case, DocumentSelector means the ID of
the language to use, while a Provider could be as simple as returning a static string, it can also
be a function that determines the result the provider receives. Finally, the provider is called
after being successfully registered whenever the VS Code editor hovers over something. One can
apply this to all providers with differences in providing methods.

5.2 Hover Provider

The hover provider is a provider that is called when your mouse cursor hovers over a piece of
code. In our case, this is exceptionally useful because of the overwhelming number of instructions
in the G-Code Language and thus makes it nearly impossible to remember what every one of
them does. To remedy this, we display the description from the instruction documentation while
hovering over them. As a point of reference for the information that needs to be displayed, we
have already prepared the Descriptions file in Section 3.1.

14

Figure 12: An example for the structure of the Descriptions file.

Therefore, we only have to read the file content to get our matching description for the
hovered content. Despite this, since we do not receive information about which word is highlighted
but only information about the cursor’s position, we still have to find out which word we hover
over. We achieve this using the TextDocument.getWordRangeAtPosition() method from the VS
Code API, which takes our given position and returns the sought-after string. Finally, we map
the string to a word and get our description, which we return to the Hover Provider.

Figure 13: The result, while hovering over EXECSTRING, displays a tooltip generated from the
Siemens Website data.

5.3 DocumentFormattingEdit Provider

Sometimes, programmers can be a bit lazy. To counteract this, we implemented a feature
that catches lazy programming, e.g. "1+ 1 ;", "A = 3;". Consequently, we implemented a
DocumentFormattingEdit Provider, which expects the entire TextDocument as the input. The
TextDocument is now being read line by line, and the plugin checks for either keywords such as
"for" or "while" or any operators specified in the Operators file created in Section 3.1. Should
any matches be found, the program checks if indentations and whitespaces are all correct - if any
"mistakes" are encountered, the provider creates a DocumentEdit, which contains the position
of the "mistake" to be replaced and the string with which to replace it. Finally, the VS Code
API handles the rest.

15

Figure 14: A program before and after formatting via the extension.

5.4 Definition Provider

Since G-Code works with GOTO statements, the ability to jump to the label is advantageous
in reducing mindless searching. For this reason, we decided to implement a Definition Provider,
which enables the user to see all possible relevant labels and jumps.
This works by once again getting the word at the cursor’s position in the same way as with the
Hover Provider in Section 5.2. In contrast to the Hover Provider, we now, however, check the
entire document whether this line of the document contains this particular word similar to the
DocumentFormattingEdit Provider in Section 5.3 and if there is a match we now have to push
the Uniform Resource Identifier (URI) into an array together with its line-number. Next, this is
resolved as a Promise and handed back to the VS Code API, which then creates the final menu
for the feature.

Figure 15: After pressing CTRL + Left Click, a window opens to display all possible places to
go to

16

6 Tokenising

Tokenising goes hand in hand with Syntax Highlighting because to know how to highlight certain
parts of code, the raw input has to be tokenised first, and according to these tokens, highlighting
can be achieved by mapping the tokens to colours or possibly even different fonts et cetera.

6.1 Regex Approach

6.1.1 Tokenising using Textmate Grammars with Regex

The more traditional approach for Syntax Highlighting in VS Code Extensions is using Textmate
Grammars. Despite its name, Textmate is not a real grammar in the traditional sense. However,
it is a collection of Regexes in a JSON file fed to the Textmate Grammar Engine, which applies
these rules to the document and returns a Tokenisation for the input.
We already supplemented a TextMate Grammar file called TMGrammar in Section 3.1 to
implement this.

Figure 16: The assigned tokens for a piece of code illustrated via the VS Code token inspector.

As seen in Figure 16, this is now to tokenise the document and to group it into different
groupings. These groupings are defined via the input of the "Art" (English → type) on the
Siemens Website.

18

Figure 17: Program code highlighted in the editor via the Regex Method.

6.1.2 Problems with the Regex Approach

Despite the ease of access and ease of use that Regex offers, when the Textmate Grammar gets
too big, small changes to fix edge cases become almost impossible, even for the most experienced
Regex users.

6.2 Grammar Approach

As a result, there was an attempt at creating a traditional grammar-based approach to remedy
this problem. Despite investing a big chunk of time while working on this thesis, the scope of
this problem could have been smaller to complete this within a reasonable timeframe. Therefore,
we will be presenting our findings, which we have made up until the point at which we put
this approach on hold for the moment and our ideas for what would have been the plan for the
finalised version.

6.2.1 G-Code Grammar

Since there is no official Grammar for G-Code, we took the approach of reverse engineering the
language into a Grammar. Together with a few people who have been working with G-Code for
years. As a result, we created a Grammar with approximately 400 productions and 5000 tokens,
which was going to be the basis for the rest of the Tokenisation.
The next step was generating a Scanner and Parser via Coco. However, this proved to be a
challenge because of the huge size of the grammar and the limitations of most programming
languages. This occurred because the maximum method size of most languages is around 65kB.
The generated Parser had parts of code causing bytecode far bigger than 65kB; therefore, the
machine could not run the program.
We remedied this by writing a script to split those methods in half or even thirds by altering
the source code files. Because of further complications with the TypeScript version of Coco,
we decided to change to the more familiar Java version, which then resolved persisting issues.
However, this meant that now there would have to be a subprocess and to increase performance
by not having to create a new Scanner and Parser every time the input is tokenised, we decided
on a Webserver solution which would host the Scanner and Parser and communicate with the

19

extension via websockets. We came to this decision because of performance reasons since it would
be wasteful to instantiate a new Scanner and Parser every time the user gave input, and instead,
we reused the Scanner and Parser.

TS-Client

Server

Websocket Client

start

send the input
(:string)

start

start Server

Event Handlers

Listeners
throw events

Serializer

Textual
Representation of
needed Actions

send the output

(:JSON-File)

Scanner/Parser +
Listeners

Deserialize

JSON

1

3

2

5

4

6

Figure 18: An overview of the communication between extension and server.

Figure 18 shows the general sequence of actions of the communication. First, the TS-Client
(extension) signals the server to start itself. After the server has finished starting, the TS-Client
starts a websocket Client, which connects to the server. Next, input is sent from the Client to
the server and forwarded to the Scanner and Parser. Since the Scanner and Parser Grammar
was attributed to include Listeneners for every Token, an event is thrown every time the scanner
scans a token. As a result, the Event Handlers activate and, together with a JSON Serializer,
transform the data into the needed JSON format. Finally, the server sends a JSON Message to
the TS-Client, deserialising the message and processing the data.

20

6.3 Theming

A further small part of this project was also theming. Since G-Code tokens differ from other
languages, we created custom token groupings. For this reason, it was impossible to use popular
colour themes, so we had to implement our own.

Figure 19: Sample code highlighted using the dark-style theme.

Figure 20: Sample code highlighted using the dark+-style theme.

Figure 21: Sample code highlighted using the monokai-style theme.

Figure 22: Sample code highlighted using the light-style theme.

21

7 Overall Architecture

After discussing the components of the system, we are now looking at the architecture of the
entire project.

Figure 23: A detailed figure about the inner workings of the extension itself.

As evident from the chapter structure, the providers and the tokenisers are the two main
components. However, while they work together to provide the plugin’s functionalities, they
work independently. The main interface is the VS Code API, which handles requests from the
extension and sends activation events to the program to activate the functionalities and pass on
the User Input from the editor.

23

8 Usage

Using the finished plugin is simple, but you have to install it first. You will only need the vsix
file generated while packaging the extension with webpack.

Figure 24: the generated vsix file.

After acquiring the file, you need to open the extension tab in your editor. Next, open the
menu with the three dots and choose "Install from VSIX".

Figure 25: the steps to install the plugin in the editor.

This opens the standard file explorer of your system. Finally, navigate to the vsix file in
the explorer and choose it for installation. Afterwards, the extension should be active whenever
there are G-Code files in the active editor.

25

9 Conclusions and Future Work

In conclusion, the Siemens G-Code language was far more extensive than expected, with approximately
400 Productions and 5000 Tokens. For reference, the 2023 language specification for C# has 59
Productions and around 500 Tokens. [1] Therefore, we had to overcome challenges along the
way, which resulted in a lot of lost time and a more or less favourable outcome.

Some planned components still need to be fully implemented for time reasons. The next
step would have been to finish encoding the events into JSON. Next, the JSON Message would
be read and processed into tokens and ranges. The tokens would be used to map the affiliated
ranges to a DecoratorOption, which would then handle the appearance of said text. Furthermore,
since Coco is also able to report SyntaxErrors, it would have been a useful tool to be able to
display these errors with a wavy red underline and a message describing the error by also using
a similar idea with DecoratorOptions or even displaying a pop-up window.

Despite the setbacks of not being able to implement the mentioned features on time, this
does provide an opportunity to continue the work in the future and enhance the plugin, which,
regardless of these unfortunate circumstances, is already a helpful tool to support developers in
their efforts of writing G-Code.

27

List of Figures

1 The most important basic regex rules.[3] . 4
2 a simple regex example with the matches in the test string highlighted in blue. [3] 5
3 The EBNF rules as proposed in an ISO standard. [6] 5
4 A small example for a valid example grammar. 6
5 The same as Figure 4 but attributed. 6
6 A rough overview over the entire system of the extension; the section inside the

blue square represents the entire scraper system. 8
7 A small website excerpt with the most important categories. [4] 8
8 Examplary format of a .mdat file. 9
9 An example of how to generate a new extension using the Yo Code Generator. . 11
10 An exemplary packaging process using vsce via webpack. 12
11 An example of how to register a provider. 14
12 An example for the structure of the Descriptions file. 15
13 The result, while hovering over EXECSTRING, displays a tooltip generated from

the Siemens Website data. 15
14 A program before and after formatting via the extension. 16
15 After pressing CTRL + Left Click, a window opens to display all possible places

to go to . 16
16 The assigned tokens for a piece of code illustrated via the VS Code token inspector. 18
17 Program code highlighted in the editor via the Regex Method. 19
18 An overview of the communication between extension and server. 20
19 Sample code highlighted using the dark-style theme. 21
20 Sample code highlighted using the dark+-style theme. 21
21 Sample code highlighted using the monokai-style theme. 21
22 Sample code highlighted using the light-style theme. 21
23 A detailed figure about the inner workings of the extension itself. 23
24 the generated vsix file. 25
25 the steps to install the plugin in the editor. 25

29

References

[1] Microsoft. Grammar - C# language specification | Microsoft Learn. url: https://learn.
microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/
grammar. (accessed: 05.09.2023).

[2] Microsoft. Visual Studio Code Extension API. url: https://code.visualstudio.com/
api/references/vscode-api. (accessed: 07.08.2023).

[3] Regex101. Regular Expressions 101. url: https://regex101.com/. (accessed: 28.08.2023).

[4] Siemens. NC-Programmierung. url: https://cache.industry.siemens.com/dl/dl-
media/562/109783562/att_1038101/v1/139197625099/de-DE/index.html#treeId=
76638a9cdc41699295df2f06036599a4. (accessed: 07.08.2023).

[5] Tabnine Team. Top 40+ VSCode Extensions for Developers in 2022. url: https://www.
tabnine.com/blog/top-vscode-extensions/#:~:text=The%20thing%20that%20makes%
20VS,overwhelming%20at%20the%20same%20time.. (accessed: 28.08.2023).

[6] Wikimedia. Extended Bachus Naur Form - Wikipedia. url: https://en.wikipedia.org/
wiki/Extended_Backus%E2%80%93Naur_form#Conventions. (accessed: 28.08.2023).

[7] Wikimedia. G-Code - Wikipedia. url: https : / / en . wikipedia . org / wiki / G - code.
(accessed: 28.08.2023).

[8] yeoman. yeoman. url: https://yeoman.io/. (accessed: 16.08.2023).

30

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/grammar
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/grammar
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/grammar
https://code.visualstudio.com/api/references/vscode-api
https://code.visualstudio.com/api/references/vscode-api
https://regex101.com/
https://cache.industry.siemens.com/dl/dl-media/562/109783562/att_1038101/v1/139197625099/de-DE/index.html#treeId=76638a9cdc41699295df2f06036599a4
https://cache.industry.siemens.com/dl/dl-media/562/109783562/att_1038101/v1/139197625099/de-DE/index.html#treeId=76638a9cdc41699295df2f06036599a4
https://cache.industry.siemens.com/dl/dl-media/562/109783562/att_1038101/v1/139197625099/de-DE/index.html#treeId=76638a9cdc41699295df2f06036599a4
https://www.tabnine.com/blog/top-vscode-extensions/#:~:text=The%20thing%20that%20makes%20VS,overwhelming%20at%20the%20same%20time.
https://www.tabnine.com/blog/top-vscode-extensions/#:~:text=The%20thing%20that%20makes%20VS,overwhelming%20at%20the%20same%20time.
https://www.tabnine.com/blog/top-vscode-extensions/#:~:text=The%20thing%20that%20makes%20VS,overwhelming%20at%20the%20same%20time.
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form#Conventions
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form#Conventions
https://en.wikipedia.org/wiki/G-code
https://yeoman.io/

Statutory Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have not used other
than the sources indicated, and that all direct and indirect sources are acknowledged as references.

This printed thesis is identical with the electronic version submitted.
Place, Date
Signature

32

	Abstract
	Kurzfassung
	Introduction
	Background
	G-Code
	Obfuscation
	VS Code and the VS Code API
	Command Registering
	Events
	Providers

	Regex
	Compiler-construction basics
	EBNF
	Tokens
	Grammars
	Coco

	Web Scraper
	Siemens Website
	Documentation Files

	Extension Initialisation and Packaging
	yeoman and creating a VS Code Extension
	Extension packaging and vsce

	Providers
	General Providers
	Hover Provider
	DocumentFormattingEdit Provider
	Definition Provider

	Tokenising
	Regex Approach
	Tokenising using Textmate Grammars with Regex
	Problems with the Regex Approach

	Grammar Approach
	G-Code Grammar

	Theming

	Overall Architecture
	Usage
	Conclusions and Future Work
	Literature

