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Abstract

This thesis documents the application of GitOps principles to a cloud-native application. A cloud-
native application is an application that is specifically designed for the cloud - an infrastructure
provided by third parties via the internet. According to GitOps principles, a system’s infrastructure
is defined as code and stored in Git. Additionally, GitOps employs automation that synchronizes
the infrastructure with its intended state. The problem at the center of this thesis is a cloud-native
application called Unguard, which previously did not adhere to GitOps principles. This issue is
particularly relevant in the contemporary context because cloud applications and the technologies
fueling them are state-of-the-art. In the context of this work, Unguard was analyzed for violations
of GitOps principles, and these violations were then resolved by developing a new architecture and
workflow that adhered to GitOps principles. This is accomplished using state-of-the-art technolo-
gies such as Kubernetes, Helm and Argo CD. The application of GitOps principles results in a
streamlined workflow for engineers with less potential for human error. Furthermore, the imple-
mented steps offer a quicker and simpler process for installing and upgrading Unguard. Lastly,
security implications of the newly adopted architecture and workflow were assessed.

Kurzzusammenfassung

Diese Arbeit dokumentiert die Umsetzung von GitOps-Prinzipien in einer Cloud-Native-Anwendung.
Eine Cloud-Native-Anwendung ist eine Anwendung, die speziell für die Cloud entwickelt wurde - eine
Infrastruktur, die von Dritten über das Internet bereitgestellt wird. Nach den GitOps-Prinzipien
wird die Infrastruktur eines Systems als Code definiert und in Git gespeichert. Darüber hinaus
setzt GitOps auf Automatisierung, um die Infrastruktur mit dem gewünschten Zustand zu synchro-
nisieren. Das Problem, das im Mittelpunkt dieser Arbeit steht, ist eine Cloud-Native-Anwendung
namens Unguard, die sich bisher nicht an die GitOps-Prinzipien gehalten hat. Dieses Problem ist
besonders relevant, da Cloud-Anwendungen und die sie unterstützenden Technologien dem neuesten
Stand der Technik entsprechen. Im Kontext dieser Arbeit wurde Unguard auf Verstöße gegen die
GitOps-Prinzipien untersucht und diese Verstöße wurden dann durch die Entwicklung einer neuen
Architektur und eines neuen Arbeitsablaufs behoben. Dies wurde mithilfe von aktuellen Technolo-
gien wie Kubernetes, Helm und Argo CD erreicht. Die Anwendung der GitOps-Prinzipien führt zu
einem optimierten Arbeitsablauf für die Ingenieure mit weniger Potenzial für menschliche Fehler.
Außerdem bieten die implementierten Schritte ein schnelleres und einfacheres Verfahren für die
Installation und Aktualisierung von Unguard. Schließlich wurden die Auswirkungen der neuen
Architektur und des neuen Arbeitsablaufs auf ihre Sicherheit untersucht.
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1 Introduction

This thesis centers around applying the GitOps principles to a Cloud-native application, two rather
broad topics. GitOps is a set of procedures that harnesses the power of the version control system
Git to provide both revision and change control within cloud environments. Cloud and cloud-native
applications are vague terms and are frequently used as buzzwords without a clear understanding
of their meaning. Roughly speaking, the term cloud refers to infrastructures and services provided
by third parties over the internet. Cloud-native applications are specifically designed to meet
the requirements of cloud services and infrastructures and to take advantage of them. One such
cloud-native application is Unguard, a research and demonstration tool developed by Dynatrace.
It is a deliberately insecure microblogging application for conducting research on cloud security.
Previously, Unguard did not adhere to GitOps principles, which impeded an efficient and convenient
workflow. In the course of the work done for this thesis, GitOps principles were applied to Unguard
to resolve the issues inherent in the previous approach.

To adopt GitOps principles in Unguard, the following steps were taken. First, it was necessary
to acquire extensive background knowledge, given the topic’s vast scope. The subsequent steps
included familiarizing oneself with Unguard and its development and deployment workflow up until
then. Next, GitOps principles were thoroughly researched to understand to what extent Unguard
did not adhere to these guidelines. The deficiencies were addressed by developing and implementing
a practical, up-to-date GitOps architecture for Unguard. This led to a streamlined workflow for
engineers, with less potential for human error, as well as to a faster and easier process for installing
and upgrading Unguard. Finally, the security implications of the newly implemented solution were
analyzed. The thesis concludes with a list of limitations and opportunities for future work.
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2 Background

This thesis aims to introduce GitOps to a cloud-native application. In order to provide the necessary
background, this chapter introduces a classic software architecture, describes its drawbacks, and
explains what distinguishes a cloud-native approach. Such cloud-native architectures introduce
numerous abstraction layers and require familiarity with multiple concepts and technologies. To
illustrate the function of these concepts and technologies, this chapter also provides small examples.

2.1 Monolithic Architectures and Their Problems

Historically, applications have been designed and developed using a monolithic architecture, result-
ing in a unified software program [1, 2]. These applications are self-contained and comprise multiple
tightly coupled functions and components. To compile or execute an application developed using
such an architecture, all its components must be present because they often run as a single process
[3]. This means that even if an engineer is only working on one component of the application, such
as the frontend, all other components must still be available on the engineer’s machine. As a result,
these components are typically part of the same code repository, leading to a substantial codebase.
Managing the codebase can become more cumbersome as the application grows in complexity. The
subsequent examples highlight some of the potential drawbacks of this architecture.

Firstly, as the complexity and size of the application grows, the build time rises significantly,
slowing down the software development lifecycle. The collaboration of engineers presents an addi-
tional problem. If everyone develops in the same repository, the likelihood of two engineers making
conflicting changes to the same file from different branches is significantly higher. Attempts to
merge these changes back into the main branch lead to what is called a merge conflict. These
conflicts will likely occur more frequently with more collaborative work in a single repository.

As the software is compiled as a whole, altering the language or framework for an existing large
codebase is difficult. If, for instance, another language or framework turns out to be more suitable
for future requirements, changing the language or framework may be impractical or even impossible
because of the application’s strong dependency on them. Such changes would necessitate significant
effort or even result in a rewrite of the whole application. Even updating the programming language
or framework to a newer version can pose a challenge since the entire project depends on the version
that is currently being used. Minor changes in the updated version can result in unforeseen issues
in other modules, thus making the updating process laborious. Finally, altering a single component
requires rebuilding and re-deploying the entire application, leading to an unnecessary expenditure
of resources.

2.2 Microservice Architecture

One potential solution to the aforementioned issues is splitting complex monolithic applications into
smaller, independent components called microservices, leading to a microservice architecture. Each
service is responsible for a specific part of the application, such as user authentication or serving
the frontend, and runs as an independent process [3]. Together, these distinct services provide the
entire application functionality, fully transparent to the user, behaving like a single program. These
services can be deployed separately and are loosely coupled. The inter-service communication is
established and maintained through well-defined APIs.

The microservice architecture allows for polyglot programming where each service can utilize
the most appropriate technology, language, and framework to achieve a specific business objec-
tive. All services can be managed through separate code repositories. This allows for independent
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compilation of the services, resulting in faster build times and the ability to re-deploy a single com-
ponent. Moreover, each service can be owned by a separate small development team responsible
for its maintenance and development, allowing them to focus their efforts on a specific module of
the overall application.

Figure 1: Monolithic Application vs. Microservices-based [3].

Figure 1 visualizes the difference between the monolithic and the microservice architectures.
While a monolithic approach unifies all the components of an application on a single server in a
single process, a microservice approach splits the components into separate processes capable of
running on different servers and communicating through APIs.

2.3 Cloud-Native Application Architecture

Cloud-native refers to software designed for running in a cloud computing environment on cloud-
native platforms like Kubernetes1 [4]. Such applications are built to be scalable, highly available,
and easy to manage. To achieve this, cloud-native applications use cloud services. Cloud services
are infrastructure, platforms, or software delivered and hosted by third-party providers via the
internet, for example, the services provided by Amazon Web Services (AWS)2. It is also possible
to run this type of application in on-premise data centers, provided that an appropriate cloud
platform such as Kubernetes is available [5]. The microservice architecture is the most widespread
architectural pattern for cloud-native applications. It divides the application into multiple small
services that collectively provide its functionality. Every microservice is packaged and run in an
isolated software environment called a container. Cloud platforms like Kubernetes are, among other
things, utilized to manage these containers. This managing is called container orchestration. A
cloud-native application utilizes various tools and frameworks and introduces several abstraction
layers. These are presented in the following sections.

2.4 Container

In a microservice architecture and, thus, a cloud-native architecture, each service is typically de-
ployed and executed within a containerized environment [5]. A container is a standardized software
unit that packages application code and its dependencies to enable reliable and fast execution in
any computing environment. The services within containers should be designed to be stateless to

1https://kubernetes.io/
2https://aws.amazon.com/
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make the container as ephemeral as possible, meaning that the container can be stopped, destroyed,
rebuilt, and replaced with minimal setup and configuration. Containers provide isolated environ-
ments for running applications without affecting the rest of the system [3]. This isolation allows
multiple instances of a service to run, thereby improving performance and reliability. On Linux,
containers run natively and share the host’s kernel, eliminating the need for guest operating systems
for each container. This, coupled with the absence of a hypervisor, results in a more lightweight
solution compared to virtualization. Figure 2 illustrates this distinction. Although there are many
container platforms, this thesis focuses on Docker3.

Figure 2: Virtualization versus Containerization [3].

2.4.1 Container Image

A container image packs everything necessary to run a service, including application code, runtime,
system tools, system libraries, and settings [5]. Such images are static – once built, they are
immutable. In other words, container images are unmodifiable templates that contain instructions
for creating a container. Docker container images are defined in a Dockerfile [6]. A Dockerfile is a
plain-text file containing the commands to create a docker container image. When Docker processes
such a Dockerfile, which is also referred to as building, the outcome is a new Docker container image.
The final container images can be uploaded and shared on industry-standard platforms like Docker
Hub4, which is an official platform for hosting and sharing Docker container images. Listing 1
illustrates a basic example of a Dockerfile.

Listing 1: Dockerfile
1 FROM curlimages/curl
2 RUN curl http :// example.com

The FROM statement defines the parent container image used as the starting point. This exam-
ple uses an image with the tool curl5 preinstalled. Curl is a command-line tool for transferring
data using various network protocols. The second line specifies the command to be executed if the
container runs. In this case, curl fetches data from http://example.com and shows the output on
the console.

3https://www.docker.com/
4https://hub.docker.com/
5https://curl.se/
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2.4.2 Container Runtime

Running a container image requires a container runtime. A container runtime is a software package
that utilizes certain features on a supported operating system to create an environment for running
a specified container image [4, 7]. The container runtime is responsible for managing the entire
container lifecycle, from launch to reconciliation and termination. Multiple providers are available,
with Docker Engine6 being the most prominent one. Containerd7 is also worth mentioning, as it
is the most common runtime included with Kubernetes.

2.5 Container Orchestration

Another essential part of the cloud-native application architecture is the use of container orches-
tration tools. Running containers in production can quickly become a massive effort due to their
ephemeral and lightweight nature [8–10]. Especially with a containerized microservice architec-
ture, running a significant number of containers can be necessary for any large-scale system. This
can lead to substantial complexity when managed manually. Container orchestration reduces the
operational complexity of running containerized workloads by automating container deployment,
management, scaling, and networking. Most container orchestration tools support a declarative
configuration model. Declarative programming describes the process of defining the desired output
instead of describing the steps needed to make it happen. With declarative container orchestration,
developers write a configuration file that defines which container images to use, how many resources
a container can allocate, how containers are connected, and how container storage is provisioned.
A container orchestration tool can then use this file to achieve the desired end state automatically.
There are many container orchestration tools available. Some popular options are Apache Mesos8,
Docker Swarm9, and Kubernetes. This thesis focuses on the latter.

2.6 Kubernetes

The de facto industry standard for a container orchestration tool is Kubernetes10 [11]. It was
initially developed by Google but was open-sourced and donated to the newly formed Cloud Native
Computing Foundation in 2015. Kubernetes empowers developers to quickly build containerized
applications by providing mechanisms for deploying, scheduling, scaling, and monitoring containers.
It also enables load balancing, self-healing, storage orchestration, managing secrets, automated
rollouts or rollbacks, and more [12, 13]. To accomplish these tasks, Kubernetes introduces many
abstractions and concepts, the most important of which will be discussed below. Kubernetes utilizes
the concept of a cluster. A cluster consists of one or multiple nodes or workers. A node refers to a
virtual or physical machine that executes and manages containerized workloads. Each cluster also
needs at least one primary node that handles the Kubernetes control plane.

2.6.1 Control Plane

The role of the control plane is to manage the cluster and ensure that each component is consistently
maintained in a desired state [3, 11, 14, 15]. It receives information about cluster activity, as well as
internal and external requests. The control plane then processes this data and makes the appropriate

6https://docs.docker.com/engine/
7https://containerd.io/
8https://mesos.apache.org/
9https://docs.docker.com/get-started/swarm-deploy/Docke

10https://kubernetes.io/
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decisions. To enhance availability and fault tolerance, it can be distributed across multiple primary
nodes. The control plane is made up of several core components, which are depicted on the left
side of Figure 3:

• kube-apiserver
The API server exposes the Kubernetes API using JSON over HTTP. It is responsible for
data transfer within the cluster as well as with external services.

• etcd
This is a distributed, persistent, key-value data store that serves as the backing store for all
cluster data. It holds the cluster’s current and desired state at any given time.

• kube-scheduler
Unscheduled workloads are assigned to nodes by the scheduler based on resource requirements,
availability, and other constraints. The scheduler monitors the resource allocation of each node
and distributes the load equally across the entire cluster.

• kube-controller-manager
This is a single process responsible for executing Kubernetes controllers. A controller is
a software program that directs the current cluster state to match the intended state by
communicating with the API server. There are several pre-defined controllers, including the
node controller, which is responsible for detecting and responding when nodes go offline. It
is also possible to add custom controllers.

• cloud-controller-manager
This component embeds cloud-specific logic into the cluster and is responsible for linking the
cluster to the API of the chosen cloud provider.

2.6.2 Nodes

A node refers to a virtual or physical machine on which Kubernetes processes workloads [11, 14].
A typical cluster consists of multiple nodes. Each node is managed by the control plane and must
contain a container runtime environment in addition to the following components. Figure 3 shows
two exemplary nodes with their components.

• kubelet
This agent is responsible for monitoring and controlling the state of the containers running
on its node, keeping them in the desired state as directed by the control plane.

• kube-proxy
The kube-proxy is a network proxy and load balancer that manages the network rules on the
nodes [11]. It routes traffic to the appropriate containers and enables network communication
with workloads from outside or inside the cluster.

2.7 Kubernetes Resources

All Kubernetes objects are represented as YAML-formatted records within the internal database
[17]. Although it is possible to create a resource with a command-line interface, defining Kubernetes
resources declaratively in a resource manifest is recommended. All resource manifests include an
apiVersion, kind, metadata, spec, and additionally resource-specific entries, but detailing them is
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Figure 3: Kubernetes Architecture and Components [16].

beyond the scope of this thesis. The following sections provide more information about Kubernetes
resources covered by this thesis.

2.7.1 Workloads

A Kubernetes workload is an executable that runs on the cluster. A workload can consist of a single
or multiple components working together. All workloads run within Kubernetes Pods.

Pods The smallest scheduling unit in Kubernetes is a Pod, which functions as an abstraction
layer for containers [3, 11, 14]. A Pod may include one or more containers, although it is common
for each container to run in its own Pod. The container and, thus, its file system is ephemeral
by default, meaning all data is deleted at the end of the Pod’s life. If data needs to be persisted,
special considerations are required. Each Pod is assigned a unique internal IP address within the
cluster and receives a new one upon restarting. Pods have defined lifecycles and can be declaratively
managed. Nevertheless, it is not advisable to manage workloads manually through Pods; instead,
one should use workload controllers that automatically manage a set of Pods. Listing 2 shows a
basic example of a Pod resource consisting of a container running the image nginx:latest. A Pod
resource, like all Kubernetes resources, can specify numerous elements. Refer to the Kubernetes
API Reference11 for a comprehensive list.

Listing 2: Kuberntes Pod Resource
1 ap iVers ion : v1
2 kind: Pod
3 metadata:
4 name: nginx
5 spec :
6 c on ta i n e r s :
7 - name: nginx
8 image: nginx: l a t e s t

11https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.27/#pod-v1-core
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2.7.2 Workload Controllers

Several workload controllers are available in Kubernetes. In this thesis, we will focus only on two
of them, namely, Deployments and StatefulSets.

Deployments Kubernetes Deployments offer developers an abstraction layer over Pods, which
provides the ability to define a common blueprint for a set of Pods [14, 17]. A Deployment is
relevant for managing a stateless application workload, where any Pod is interchangeable and can
be replaced if needed.

StatefulSets This type of workload resource is similar to Deployments but is used for stateful
workloads, such as databases [14, 17]. Scaling a stateful application is harder as each Pod’s state
must be accounted for and preserved. In a StatefulSet, Pods have a distinct identity and are unique,
prohibiting their random creation or deletion. Only one Pod is typically allowed to write data to
ensure data consistency. Manual configuration is required for data synchronization with other Pods.
Additional instances of Pods can then have read access to speed up the application.

2.7.3 Services

A Kubernetes Service exposes a network application running as one or more pods in a cluster [3,
14, 17]. The Service has a stable IP address assigned to it, providing consumers of the Service with
stable access to the Pods it bundles. When the Service contains multiple Pods, it load-balances
traffic on a round-robin basis.

2.7.4 Ingress

To access Services from outside the cluster, an Ingress resource is utilized. This resource exposes
HTTP/S routes from outside the cluster to Services within the cluster. The routing is defined by
the rules in the Ingress resource [3, 14].

2.7.5 Storage

Kubernetes includes various storage concepts. However, two are particularly important for this
paper and will be discussed further.

Volumes As a container’s file system is ephemeral, any data stored or modified during the con-
tainer’s lifetime will be lost if the container crashes or if the Pod containing it crashes or stops [3,
14]. Also, it can sometimes be necessary to enable two containers running on the same Pod to access
a shared filesystem. The Kubernetes Volume abstraction resolves both of these problems. Kuber-
netes supports several types of Volumes. Volumes can be divided into two categories: ephemeral
and persistent. Each category has multiple sub-types which utilize different storage technologies.
Ephemeral volumes provide persistence only during the Pod’s lifetime. In contrast, persistent vol-
umes outlast the lifetime of a Pod. The various sub-types have distinct storage options, from using
local storage on the Pod to employing cloud storage providers like AWS.

ConfigMaps and Secrets Applications typically require configuration, such as a URL and pass-
word, to access a database [3, 14]. One way to decouple application code from configuration is to
provide configuration via environment variables. Using ConfigMaps and Secrets, engineers can avoid
embedding such configurations and sensitive data in Pod specifications or container images.
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A ConfigMap is a dictionary of key-value pairs. Containers running in Pods can be configured
to access the values in ConfigMaps. The primary distinction between a ConfigMap and a Secret is
that the latter is intended to store sensitive information like passwords, tokens, or keys. However,
Secrets are not encrypted at rest by default and require additional configuration to ensure their
complete secrecy.

2.7.6 Namespaces

Kubernetes Namespaces enable the isolation of a group of resources within a cluster [3, 14]. This is
intended for environments with many users spread across multiple teams or projects or to separate
development, test, and production environments. They are also helpful for providing separation
between applications deployed in the cluster.

Kubernetes is a platform that is both comprehensive and highly intricate. The aforementioned
components are just a fraction of the available elements.

2.8 Kubectl

Kubernetes offers a command-line utility to interact with the control plane of a Kubernetes cluster
[18]. The tool called kubectl12 enables the management of all components of a Kubernetes cluster. It
is available for most operating systems and architectures. Listing 3 displays the most fundamental
command: get. It displays a list of the available resources of a specific type in the cluster, in this
case, Pods.

Listing 3: Displaying all Pods using Kubectl.
1 kubectl get pods

To develop applications for Kubernetes, engineers need access to a cluster to deploy and test their
code changes. Multiple projects aim to provide a simple installation of a local cluster for learning
and developing applications.

2.9 Minikube

Minikube13 is a tool used to quickly set up a local single-node Kubernetes cluster on a developer’s
machine, ideal for developing and testing Kubernetes applications [19]. After installation, the
cluster can be started with the with the start command depicted in Listing 4.

Listing 4: Creating a Kuberenetes Cluster Using Minikube.
1 minikube start

2.10 Configuration Management

Using the Kubernetes resources depicted above, Kubernetes applications can be easily created.
Engineers can always manually edit the manifest files when they need to change a configuration.
However, more often than not, there is a need for an automated way of handling such configuration

12https://kubernetes.io/docs/reference/kubectl/
13https://minikube.sigs.k8s.io/docs/
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modifications [11]. One of the most common use cases is a need to tailor the configuration for dif-
ferent environments, such as the development or production stages. There are various configuration
management tools available. However, in this thesis only two of them will be presented.

2.10.1 Kustomize

Kustomize14 is an open source configuration management tool included in the kubectl CLI tool since
Kubernetes 1.14 [11, 17, 20, 21]. It uses the untouched YAML Kubernetes manifest files and, with
overlays, allows for substitution and reuse. Kustomize introduces the concept of base and overlay
YAML manifests. Engineers develop base manifests and use overlays to patch the manifests for
different environments. The specification for the customization is defined in a kustomization.yaml
file. Kustomize reads these files and then merges the base files with the changes specified in the
overlay files to generate the final manifest. Kustomize has several inbuilt methods for modifying
the base manifests, but this thesis focuses on patches. Patches add or override fields on resources.

Example Figure 4 displays a typical directory structure for using Kustomize. The base directory
comprises the base manifests and a kustomization file that specifies them. The dev folder contains
the overlays and a corresponding kustomization file.
.

base
base-kustomization.yaml
base-pod.yaml

dev
dev-kustomization.yaml
dev-pod.yaml

Figure 4: Kustomize Directory Structure.

The base-pod.yaml file describes a Pod resource and its content is identical to that presented in
Listing 2. The base-kustomization.yaml file is depicted in Listing 5. The resources list specifies
all the Kubernetes resources that kustomize should manage.

Listing 5: base-kustomization.yaml
1 ap iVers ion : kustomize . c on f i g . k8s . i o / v1beta1
2 kind: Kustomization
3 r e s ou r c e s :
4 − base−pod . yaml

Listing 6 depicts the kustomization file in the dev directory. Here, the resources list specifies
the base directory, and it includes the base-kustomization.yaml file as a resource to be used.
In addition, it includes a patches definition. The path specifies where to take the input for the
patch operation from. In this example this is the dev-pod.yaml file. Since the target defines the
kind Pod, the patch operation applies to all resources of the type Pod. There are also other target
selectors to identify the resource the patch must apply to.

14https://kustomize.io/
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Listing 6: dev-kustomization.yaml
1 ap iVers ion : kustomize . c on f i g . k8s . i o / v1beta1
2 kind: Kustomization
3 r e s ou r c e s :
4 - . . / base
5 patches :
6 - path: dev−pod . yaml
7 t a r g e t :
8 kind: Pod

The dev-pod.yaml file only includes the content shown in Listing 7, defining a fragment of a
Kubernetes Pod resource, precisely the container definition, but with a different name. This kind
of patch is called a strategic-merge-style patch. The default behavior is to replace values. This patch
strategy needs as input just enough context to identify the elements to change. When kustomize
renders the final manifest, the name of the container will be replaced with nginx-renamed.

Listing 7: dev-pod.yaml
1 spec :
2 c on ta i n e r s :
3 - name: nginx−renamed

Kustomize makes it easy to leverage existing Kubernetes manifests and make them configurable.
However, the framework has limitations. In some cases, complex nested configurations may be nec-
essary, making it challenging to comprehend how the final rendering will be produced. Furthermore,
kustomize does not have parameters and templates, which may be necessary sometimes [11].

2.10.2 Helm - The Package Manager for Kubernetes

An alternative approach to managing configurations is to utilize Helm15. Although it functions
primarily as a package manager for Kubernetes, Helm leverages a template engine to provide config-
urable manifests [3, 17, 22]. Helm provides a fast and convenient method for installing applications
on a Kubernetes cluster. The Helm command line tool enables engineers to install and configure
applications. The Artifact Hub16 is the primary source for browsing applications. However, users
can add other repositories to Helm. As of version 3, Helm is now only installed on the machines of
the engineers, eliminating the need for installation on a cluster. It also allows for the straightfor-
ward upgrading of applications and rollback to a previous state in case of problems. Helm leverages
the concept of templates. This involves developers creating a template for a Kubernetes resource,
defining values that should be configurable, and then Helm uses the Go template engine to generate
the final resource. For example, the command in Listing 8 installs a MySQL17 database to a cluster.

Listing 8: Intalling MariaDB Using the Helm Install Command.
1 helm install my-database stable/mysql

Helm Charts Helm application packages are called Charts, and they fully specify the resources
needed to run the application, its dependencies, and its configurable settings. A chart is a directory

15https://helm.sh/
16https://artifacthub.io//
17https://www.mysql.com/
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that only needs to contain a few files. It has a structure as shown in Figure 5. Helm charts do
not include the container image itself. It has metadata that specifies the location of the image,
similar to a Kubernetes Pod resource. Kubernetes will then download the container image from
the specified location.
.

Chart.yaml
templates

deployment.yaml
_helpers.tpl

values.yaml

Figure 5: Structure of a Simple Helm Chart.

Chart.yaml The Chart.yaml is a YAML file containing information about the chart. In its
simplest form, it contains only the apiVersion, a name, and a version of the chart as shown in
Listing 9.

Listing 9: Chart.yaml
1 ap iVers ion : v2
2 name: demo
3 ve r s i on : 0 . 1 . 0

Templates Directory The templates directory contains the templates for Kubernetes resource
manifests. The template engine will process these files and replace the placeholders with actual
values. Listing 10 shows the example Pod manifest from above but with a placeholder for some
entries. The Go template language utilizes double braces to denote the start and end of a replaceable
value in a template.

Listing 10: Pod Template Manifest
1 ap iVers ion : v1
2 kind: Pod
3 metadata:
4 name: {{ inc lude "demo.name" . }}
5 spec :
6 c on ta i n e r s :
7 - name: {{ . Values . pod . name }}
8 image: {{ . Values . pod . r e po s i t o r y }}

Values The values.yaml file contains the default values for a chart, which can be accessed in
a template using the Values object. The template instruction {{ .Values.pod.name }} looks in
the Values object for an element named pod with a sub-element name and then injects the found
value into the template.

Helm utilizes these values to substitute the placeholders in the templates and render the final
chart. The Helm CLI can be passed alternative value files as parameters for commands. This allows
engineers to override the default values to tailor the configuration of a Helm application for different
environments. Listing 11 shows a Values.yaml file with the values for the above example.
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Listing 11: Values.yaml
1 pod:
2 name: nginx
3 r epo s i t o r y : nginx: l a t e s t

Functions The Go template language is Turing-complete, allowing developers to create functions
that can be reused in all templates. This language makes extensive use of the pipe operator. The
function presented in Listing 12 obtains the name of a Pod and transfers it to the trunc function,
which truncates all strings after after a defined number of characters, in this example 63. To call
such a function in a template, the include keyword is used. This is demonstrated in Listing 10
in line 4, where the function presented in this section is utilized. Functions for Helm charts are
typically stored in the _helpers.tpl file.

Listing 12: Go Template Function
1 {{/*
2 Get the name of the pod.
3 */}}
4 {{− de f i n e "demo.name" −}}
5 {{− . Values . pod . name | trunc 63 }}
6 {{− end }}

Chart Tests Helm implements the functionality to test charts. These tests could validate that
the chart works as expected when installed. A Helm chart test is located in the templates/test
directory and consists of a Kubernetes Job resource that defines a container with a specific com-
mand to execute. This command could, for example, try to connect to a service and thus validate
that it is reachable as expected. The container must successfully exit in order for the test to be
considered a success.

With Helm, engineers can conveniently install and share Kubernetes applications. The template
functionality offers an advanced approach to managing configurations, but it has a steeper learning
curve due to the language used and the additional concepts introduced [20].

2.11 Developing Cloud-Native Applications

A microservice architecture-based application can complicate the development process because each
distinct service has to be independently built and run to provide the application’s overall function-
ality [23]. If done manually, the engineer is required to build individual container images and
subsequently deploy them to the Kubernetes cluster. Every code change would imply repeating
that cycle.

2.11.1 Skaffold

To help developers, Skaffold18 aims to automate this process and provide a fast local development
workflow [24]. Skaffold enables developers to define the container images and Kubernetes resources
that the application consists of declaratively in a YAML configuration file. Upon receiving the
corresponding command, Skaffold uses this file to build the container images automatically, augment

18https://skaffold.dev/
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the Kubernetes resources with the new container image information, and then deploy the application
to a Kubernetes cluster. The process of augmenting the Kubernetes resources is called hydration. To
enable fast development and local testing, Skaffold can continuously watch a code directory, detect
changes, and trigger a rebuild and redeployment of the changed code. Skaffold supports several
tools to render Kubernetes manifests, such as Kustomize and Helm. It also supports environment
management through profiles. Profiles enable modification of the defined workflow and can be
enabled as needed. Skaffold profiles work similarly to kustomization patches and can be enabled by
appending the -p flag followed by the desired profile name.

Listing 13 shows a typical skaffold configuration. The build section defines the artifacts to be
built. Here, a name, demo-image, and the path to the Dockerfile are specified. The manifests
section configures the renderer and the path to the manifests. This example uses Kustomize and
specifies the appropriate base manifests. In the deploy section, developers specify how the applica-
tion will be deployed. In this example, kubectl is used. The last section specifies the profiles. This
example defines a dev profile, and when enabled, the path of the manifest files for kustomize will
be replaced by the dev overlays, as described in Section 2.10.1.

Listing 13: Skaffold Configuration
1 ap iVers ion : s k a f f o l d /v3
2 kind: Conf ig
3 metadata:
4 name: demo
5 bu i ld :
6 a r t i f a c t s :
7 - image: demo−image
8 context : s r c /demo
9 man i f e s t s :

10 kustomize:
11 paths:
12 - . / k8s−mani f e s t s / base
13 deploy:
14 kubect l :
15 {}
16 p r o f i l e s :
17 - name: dev
18 patches :
19 - op: r ep l a c e
20 path: / man i f e s t s / kustomize /paths
21 value : . / k8s−mani f e s t s /dev

Skaffold speeds up the Kubernetes application development process for engineers by handling the
repetitive task of rebuilding and re-deploying modified code. This also provides the engineers with
immediate feedback throughout the development process.

2.12 GitOps for Kubnernetes

To manage deployed applications and control a cluster, engineers can use tools like Kubectl, Kus-
tomize, Helm, or Skaffold directly. However, under this approach, every engineer must have cluster
access and the appropriate permissions [25]. Additionally, the state of the cluster and deployed ap-
plications might lack transparency. Changes to the cluster or an application are invisible, including
who made the change and why. GitOps tools can significantly improve observability and provide
other benefits.
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2.12.1 Argo CD

Argo CD19 is a GitOps tool built for Kubernetes. With Argo CD, engineers can declaratively define
the Kubernetes applications they want to deploy in the cluster [17, 26]. The definition can be stored
in a Git repository, and Argo CD synchronizes the cluster with the defined state. This approach
of defining the desired state makes deployments and other lifecycle events automatable, traceable,
and auditable because they are documented in a version-controlled file. Instead of pushing changes
via Kubectl or Helm, Argo CD continuously pulls in changes from the Git repository and applies
them to the cluster. This technique can also enhance the security of a cluster since fewer highly
privileged users are required to interact with it directly. Argo CD includes a user-friendly graphical
interface, illustrated in Figure 6. This interface provides engineers with complete visibility of the
applications managed by Argo CD. To define an application, Argo CD adds custom resources to
Kubernetes. These resources, like all other Kubernetes resources, are formatted in YAML. A basic
example of an Argo CD Application resource is depicted in Listing 14. The crucial part is the
source section. The link specified here leads to the repository of Kubernetes resources required to
install an application.

Figure 6: Argo CD Graphical User-Interface.

Listing 14: Argo CD Application Manifest
1 ap iVers ion : a rgopro j . i o / v1alpha1
2 kind: App l i ca t ion
3 metadata:
4 name: guestbook
5 namespace: argocd
6 spec :
7 p r o j e c t : d e f au l t
8 source :
9 repoURL: https :// github . com/ argopro j /argocd−example−apps . g i t

10 ta rg e tRev i s i on : HEAD
11 path: guestbook
12 d e s t i n a t i on :
13 s e r v e r : https :// kubernetes . d e f au l t . svc
14 namespace: guestbook

19https://argo-cd.readthedocs.io/en/stable/
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2.13 GitHub Actions

GitHub Actions20 is a continuous integration and continuous delivery (CI/CD) platform [27]. It
enables developers to automate various tasks in their workflow, including building, testing, and
deploying code changes. Developers can create customized workflows by utilizing existing Actions
from the GitHub Marketplace21 or writing their own. These workflows can be triggered by various
events, such as new commits or the creation of a pull request. Overall, GitHub Actions provide an
efficient and flexible way to automate development processes within the GitHub platform. Listing 15
depicts a simple demo GitHub Action. The action is triggered on each push, runs on an Ubuntu
environment, and outputs a message on the console.

Listing 15: GitHub Action
1 name: GitHub Actions Example
2 on: [ push ]
3 jobs :
4 GitHub−Actions−Example:
5 runs−on: ubuntu− l a t e s t
6 s t ep s :
7 - name: Pr int Message
8 run: echo 'This␣action␣is␣triggerd␣on␣a␣push!'

20https://github.com/features/actions
21https://github.com/marketplace?type=actions

16

https://github.com/features/actions
https://github.com/marketplace?type=actions


3 Overview

After detailing the necessary concepts in the previous chapters, the following section introduces
the application at the core of this thesis. It contains an overview of the application, its function-
ality, and its architecture. This thesis was written in collaboration with Dynatrace, which offers
a sophisticated Kubernetes security and observability solution [28]. To improve and validate the
solution internally and to demonstrate it to customers, Dynatrace needed a worst practice example
– a testing ground. This led to the development of Unguard22, an application that disregards all
Kubernetes configuration and application-security best practices.

3.1 Unguard, an Insecure Cloud-Native Microservice Demo Application

Unguard is a rudimentary microblogging application that allows users to post text and images,
provides basic user management capabilities, and can place advertisements [29]. Unguard utilizes
a cloud-native architecture, where containerized microservices provide all functionality. Its services
are implemented using various programming languages, including Java, C#, Go, and JavaScript.
Unguard uses Kubernetes to orchestrate its services in a cloud computing environment, which means
the entire infrastructure is defined as Kubernetes resources. The microservices are all packaged as
Docker container images. Unguard is intentionally insecure, incorporating several security vulnera-
bilities. As this thesis does not focus on these vulnerabilities per se, see the official GitHub page [30]
for further information. Figure 7 displays a screenshot of a logged-in user’s timeline on Unguard.

Figure 7: Unguard’s Homepage.

22https://github.com/dynatrace-oss/unguard
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3.2 Service Architecture of Unguard

Unguard comprises nine microservices, two databases, and two load generators. Figure 8 shows
the architecture diagram from a service level. The envoy-proxy handles all inbound traffic to
the application. Depending on the URL, the traffic is then forwarded to the ad-service or the
frontend. The status-service is responsible for providing a user with information about the status
of Unguard’s Kubernetes deployment. The ad-service allows admins to upload images that serve
as advertisements to users. The frontend is the primary interaction point for users. It utilizes all
the other services to provide the functionality of a microblogging application.

/ui

/ad-service

/healthz

Membership 
Service  Ad Service    

User Auth

Service

Redis

Profile ServiceStatus Service

Kubernetes API

MariaDBProxy Service

Microblog 
Service

Frontend   Envoy Proxy

User/Attacker

Internet

Ingress

Figure 8: Unguard’s Service Architecture [29].

A typical user session might look like this: After visiting the Unguard website, the user needs to
log in. To authenticate or register a user, the frontend sends a request to the user-auth-service. This
service maintains a MariaDB database of all registered users. If the user authentication succeeds,
the user-auth-service returns an authentication token. The user is then redirected to the home page.
The frontend loads the timeline by requesting data from the microblog-service. This service holds all
the users’ posts in a Redis database. When the user posts something to the timeline, the frontend
sends a request to the microblog-service. In Unguard, users can share URLs and images alongside
text. However, unlike Twitter, directly uploading and publishing pictures is not supported. Instead,
users need to provide a link to the image. The frontend utilizes the proxy-service to fetch the image
from the internet and then passes the obtained data to the microblog-service, which saves it to the
Redis database. URLs are handled similarly. However, rather than an image, the proxy-service
retrieves the metadata of the link. Unguard features a simulated membership model with two
tiers: free and pro. The free membership contains advertisements. Users can upgrade to the pro
membership to consume Unguard without advertisements. To manage the membership status of
users, the frontend sends requests to the membership-service, which persists this data in MariaDB.
A user can visit the profiles of other users, and the profile-service handles this.

Unguard offers a user-simulator to generate synthetic user traffic. This program emulates a
genuine user’s behavior by generating traffic through a real browser. It shares texts, images, and
URLs and visits other user profiles. These bots are run periodically, filling the platform with
content. The post in Figure 7 is created by such a bot, as indicated by the username with the
prefix ROBOT. Unguard also includes a program to simulate an attacker by periodically exploiting
the vulnerabilities of Unguard’s services.
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4 Previous Workflow for Unguard

With the necessary technological background presented in Section 2 and an understanding of the
overall structure and function of Unguard provided in Section 3, this chapter now focuses on the
current development and implementation process and associated obstacles.

4.1 Source Code Architecture

Unguard utilizes a microservice architecture, but all the code of its services is part of the same code
repository. The services are containerized and use Docker as container technology, and thus, each
service maintains a Dockerfile specifying its container image. The Kubernetes resources defining
Unguard are also part of the repository. Previously, Unguard utilized Kustomize as a configuration
management tool to tailor its configuration for different environments. Since Unguard is open
source, the Kubernetes configuration for the Dynatrace internal clusters cannot be included in the
public repository and is instead stored in a separate internal repository.

4.2 Development and Local Deployment

Unguard uses Skaffold to manage its building, pushing, and deployment workflows, providing engi-
neers with a more convenient development experience. It is configured to create all container images
and to deploy Unguard to a cluster. Furthermore, Skaffold was previously utilizing Kustomize to
render the Kubernetes resources. Unguard’s Skaffold configuration included profiles to support var-
ious environments and configurations. These profiles defined the source location for the Kustomize
overlays. Engineers only needed to run Skaffold with the desired profile, and the related Kustomize
configuration would be applied upon deployment. With a local cluster, such as Minikube installed,
engineers merely needed to execute the Skaffold command, as shown in Listing 16, to deploy their
version of Unguard locally.

Listing 16: Previous Development Command for Unguard
1 skaffold run -p localdev -minikube

4.3 Production Cluster Deployment

Unguard runs on various dedicated Kubernetes clusters, each responsible for different stages of
development within the internal Dynatrace infrastructure. Deploying or upgrading Unguard on
these clusters was similar to the workflow mentioned above. However, in addition to the publicly
available Unguard source code, the engineer had to also download another internal repository onto
their machine. It contained a second Skaffold configuration file with extra Skaffold profiles and
associated Kustomize overlays for the internal environments. For example, these overlays modified
the Kubernetes Ingress resource by adding internal IP addresses and configuring routes to access
Unguard.

After downloading the public and the private repository and connecting the engineer’s machine
to the desired cluster, the engineers could run the Skaffold file with the appropriate profile from the
private repository. Skaffold would then build the container images, render the Kubernetes resources,
and deploy the application to the remote cluster. Figure 9 depicts this deployment workflow.
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Figure 9: Previous Deployment Workflow.

4.4 Benefits and Drawbacks

The approaches presented in this chapter have advantages and disadvantages. The advantages
include:

• Since the application utilized Kustomize, adding or altering overlays to tailor Unguard to the
environments was relatively simple.

• Using Skaffold significantly simplifies the development process.

• The remote deployment and local development processes were similar and utilized Skaffold.

However, the previous approach also had notable disadvantages, such as:

• The nested Kustomize structure that spans multiple repositories made it challenging to un-
derstand the final Kubernetes manifest’s rendering.

• The nested Kustomize structure introduced a dependency on the order of the applied patches.

• The previous process of deploying or upgrading a cluster was manual and, hence, error-prone.
Due to being a manual process, whenever a new version of Unguard was released, an engineer
needed to follow the aforementioned steps to upgrade Unguard.

• The remote deployment process necessitated extra AWS-specific tools, including those for
connecting to the cluster.

• No prebuilt container images for Unguard’s services were available to download; they had to be
rebuilt from scratch for every newly created cluster. However, for subsequential deployments
or upgrades of a cluster, the unchanged images could be reused.

• The fact that there are no prebuild container images introduces several additional problems,
such as:

- The builds of the same version of Unguard were not guaranteed to be reproducible
because of potentially changed base images or other differences in the building process
of the container images.

- It took a significant amount of time for Unguard to be built and deployed on a cluster
for the first time. Even on a powerful machine, it took about 30 minutes.

- To build the container images, all base images and other dependencies had to be down-
loaded from artifact registries, which resulted in unnecessary resource consumption and
often exceed the rate limits of online services, e.g., Docker Hub.
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5 Introducing GitOps

The core aspect of this thesis is to research and implement an up-to-date GitOps workflow for
Unguard. This section presents the GitOps model and its origins. It assesses whether Unguard
currently adheres to these practices and determines the necessary steps to implement a complete
GitOps workflow.

5.1 Traditional Ops

In a traditional IT organizational model, an organization comprises distinct development, quality
assurance (QA), and operations teams, wherein each focuses on a particular aspect of the application
development process [11]. Development teams provide new application versions to a QA team,
which tests the application increment before passing it on to the operations team for deployment.
With three entities involved, the likelihood increases that critical details are not communicated,
potentially leading to gaps in testing or incorrect deployment.

5.2 DevOps

DevOps is an organizational structure and set of software development practices that combine soft-
ware development (Dev) and IT operations (Ops). In a DevOps model, the development teams are
also responsible for testing, deploying, and operating a software application. Figure 10 shows the
difference between traditional Ops, where an organization is divided based on functional bound-
aries, and DevOps, where teams are structured according to distinct products or components.
In a DevOps team, each member is ideally responsible for programming, testing, deploying, and
operating the respective product or component.

Figure 10: Traditional Ops versus DevOps [11].

A core DevOps principle entails automating the software development lifecycle. This involves
the automation of tests, builds, releases, development environment provision, and other manual
tasks that could hinder the software development process or lead to human error.

Two software development practices address automation in the development process:

• Continuous integration (CI) describes the practice of regularly integrating all code changes
into the main branch, automatically testing each change, and automatically kicking off a
build.

• Continuous delivery (CD) describes the practice of automating the infrastructure provisioning
and application release process.
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5.3 GitOps

GitOps is an operational framework that takes DevOps best practices and extends them to IT
infrastructure management. It enables developers to define and automate IT infrastructure and
manage it similarly to their codebase through Git-based repositories. In other words, GitOps
embraces Git repositories as the single source of truth for Infrastructure as Code (IaC). IaC refers
to the management of IT infrastructure using configuration files.

In a GitOps model, the infrastructure code is kept in a version control system, just like the
application source code. Instead of manually making changes to the infrastructure through a
UI or CLI, an engineer makes changes to the configuration files that declare the desired state.
These changes then undergo the standard version control processes. First, the engineer opens a
pull request for others to review. Once approved and merged with the main branch, an operator
software process is responsible for converting the system’s current state to the desired state based
on the stored configuration in the Git repository.

The GitOps Working Group defines GitOps with these principles [31]:

- "Declarative - A system managed by GitOps must have its desired state expressed declar-
atively.

- Versioned and immutable - The desired state is stored in a way that enforces immutability
and versioning and retains a complete version history.

- Pulled automatically - Software agents automatically pull the desired state declarations
from the source.

- Continuously reconciled - Software agents continuously observe the actual system state
and attempt to apply the desired state."

The GitOps model emphasizes equal treatment of application and infrastructure code, using
Git as the single source of truth [11]. As a result, utilizing a version control system benefits
both domains, improving code quality, traceability, auditability, and collaboration. Furthermore,
GitOps relies on automation that synchronizes the infrastructure with the intended state. In its
most extreme manifestation, the GitOps model prohibits any manual changes to the infrastructure.

5.4 How to Apply GitOps to Unguard

After discussing these DevOps and GitOps principles and examining Unguard’s previous develop-
ment and deployment processes, we can identify where they diverge. This section lists GitOps
principles that have been violated and suggests solutions for addressing them, in Table 1.

Violation Solution

Unguard does not employ any CI or CD
delivery practices.

A CI/CD pipeline is implemented to improve the
development process and reduce human error.

The cluster’s desired state is not declaratively
defined and stored in a version control system.

The cluster’s desired state is declaratively
defined in a Git repository.

Deploying or upgrading Unguard is done
by making manual changes to the
Kubernetes infrastructure.

A GitOps tool automatically keeps the cluster
in the desired state and eliminates the need
for manual changes to Kubernetes resources.No software agents automatically pull and

reconcile the desired state of the system.

Table 1: Violations of GitOps Principles and Proposed Solutions.

22



6 Applying GitOps Principles to Unguard

This chapter describes the steps taken to implement the aforementioned solutions for applying
GitOps principles to Unguard. It describes the new architecture that was developed. The solutions
shown are the result of research and discussions with GitOps experts employed at Dynatrace.

6.1 Helm Chart for Unguard

The initial task was to create a Helm chart for Unguard, as detailed in Section 2.10.2. It would have
been possible to apply GitOps principles to Unguard without developing a Helm chart. However, a
Helm chart significantly simplifies Unguard’s deployment and installation process. The chart lets
engineers quickly install Unguard to a local or remote Kubernetes cluster with just a few commands
without using Skaffold and without having to build it themselves. This makes Unguard accessible to
a much broader audience, also enabling non-developers to install it easily. The chart also simplifies
the implementation of the other required steps for applying GitOps principles.

6.1.1 Creating the Chart

Helm offers a command to generate a skeleton chart containing the standard files and directories
needed. This skeleton was used as a starting point. The generated Chart.yaml was adapted for
Unguard. The starting point was to create Helm chart templates for Unguard’s Kubernetes re-
sources. As Kubernetes manifests had previously been rendered using Kustomize, the next step
was to generate a template for each base manifest. This was achieved by copying the contents of the
Kustomize base directory into the new chart’s template folder. Then, these templates were made
configurable, meaning that all the default settings from the templates were extracted and relocated
to the values file. The next step was to manually analyze all the overlay directories and recreate
the effects these overlays previously would have had. These effects were added to the templates.
The process is illustrated in the following example.

Figure 11: Utilizing Kustomize to Adjust Service Type.

Figure 11 shows the AWS kustomization file on the right, which, when applied, changes the
value of spec.type in the unguard-envoy-proxy Service from ClusterIP to NodePort. For a
comprehensive introduction to Kustomize, please refer to Section 2.10.1.
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To achieve the same effect with the Helm chart, new values were added, as shown on the right
side in Figure 12. Using the template language, a conditional block was created in the unguard-
envoy-proxy template file. The output is determined by the value of aws.enabled. If aws.enabled
is true, NodePort is used. Otherwise, the default value defined in the values file is used.

Figure 12: Utilizing Helm to Adjust Service Type.

After representing all overlays in the chart, the subsequent step was to modify Skaffold to utilize
the recently incorporated Helm chart instead of Kustomize.

6.1.2 Adopting Skaffold

First, the existing configuration for Kustomize was removed. Instead, the new Helm chart was
added. The subsequent step involved instructing Skaffold to substitute the information of the
container image in the Helm chart with the ones created during a Skaffold run.

Figure 13: Adopting Skaffold.

Figure 13 displays an excerpt from the added section in the Skaffold file. The example only
exhibits the adjustments made for the ad-service. However, the adjustments for the other services
are similar. Skaffold stores information about container images as environment variables during the
building process. The setValueTemplates field allows engineers to assign the content of environ-
ment variables to Helm values. This feature was utilized to replace the metadata of the images in
the chart with the metadata of the images that Skaffold built. This is shown in the red section on
Figure 13. Consequently, when Skaffold installs the chart, the appropriate images are selected.
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To transition from Kustomize to Helm, the Skaffold profiles needed to be migrated as well. This
process was straightforward; now, each profile uses a distinct values file to adopt the configuration
of the Helm chart. Therefore, new value files were created for all required skaffold profiles.

6.1.3 Local Development

Since Skaffold has been adopted, the workflow for developing Unguard remains unchanged. The
only change is that Unguard is now configured for Minikube by default. Consequently, the Minikube
Skaffold profile has been removed.

6.2 GitHub Action CI Pipeline

The initial step in the proposed solution was to implement a CI pipeline for Unguard. The Unguard
repository is hosted on GitHub, so the pipeline has been implemented as a GitHub Action. An
example of a GitHub Action is depicted in Section 2.13. The CI pipeline consists of a GitHub
Action for testing and a GitHub Action for building and pushing artifacts.

6.2.1 Testing

This GitHub Action tests the entire infrastructure of Unguard. Firstly, the well-formedness of the
Helm chart is verified. Then, the artifacts are built using Skaffold and deployed to a freshly created
Minikube cluster within the GitHub Action environment. It performs an entire Skaffold run, and by
that, it ensures that all container images of the services can be built. Since Skaffold uses the Helm
chart, it also verifies that the chart can be installed. A Skaffold run only exits successfully if the
installation stabilizes, meaning that all containers start and do not immediately crash, thus ensuring
no fatal errors occurred in one of the services. Additionally, a basic Helm chart test is performed.
Helm chart tests, as outlined in Section 2.10.2, can be utilized to confirm the correct installation
of a chart and to validate specific features of the installed application. The test developed for this
thesis is rudimentary and merely tests the connectivity to the frontend. This test can be extended
in future work to test all the functionalities of Unguard.

The GitHub Action is executed only if modifications to a service’s source code, Helm chart, or
Skaffold configuration are included in a pull request. The process is repeated as new commits are
added to this pull request. Completing this GitHub Action is obligatory before the pull request can
be merged to give engineers feedback on possible errors.

6.2.2 Building and Pushing Artifacts

This GitHub Action rebuilds the container images and the Helm chart and then pushes them to
the GitHub Container Registry (GHCR). A commit to either the main or release branch triggers
the GitHub Action. The pushed artifacts are tagged with either a release or intermediate release
tag.

6.3 Argo CD

So far, implementing a CI pipeline has been the first step in applying GitOps principles to Unguard.
Further steps, namely the need for a declaratively defined state and an automatically synced cluster
infrastructure, were accomplished with Argo CD.

Argo CD, as described in Section 2.12.1, provides a custom Kubernetes resource, the Application
resource. With this resource, engineers can declaratively define Kubernetes applications that should
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be installed and managed by Argo CD. However, Argo CD must be made aware of this newly
defined Application resource. This could be done through the UI or the CLI but would contradict
the GitOps principle of not performing manual changes. In addition, GitOps requires that all
configurations, including the Argo CD configuration, reside within a Git repository.

App of Apps Pattern This is where the App of Apps pattern comes into play. This pat-
tern enables the definition of a top-level Argo CD Application that does not reference Kubernetes
resource files but instead refers to a directory containing Argo CD Application manifests for all
Kubernetes applications to be installed. Each sub-application manifest in this directory references
the Kubernetes resources necessary to install the desired applications. In this approach, the entire
configuration, including Argo CD’s configuration, is defined declaratively and can be stored in a
Git repository.

6.3.1 Infrastructure Repository

A second private GitHub repository has been created to host the Argo CD configuration for Un-
guard. This also includes the values for configuring Dynatrace’s internal Unguard clusters. In
order to present the work conducted in this thesis publicly, a second repository23 has been created
without any confidential information. The public repository has the same structure as the private
repository. The structure of this repository is illustrated on the left in Figure 14.

Figure 14: Root Argo CD Application.

The unguard-root.yaml is the aforementioned Argo CD top-level Application resource for the
App of Apps pattern. As highlighted in red in Figure 14, it points to the unguard/application
subfolder located within this repository. This folder contains the Argo CD Application manifests
for the Kubernetes applications to be installed. In this case, there are two Applications: Unguard
and MariaDB.

MariaDB Figure 15 shows, on the left, the Argo CD Application resource defining the MariaDB
database instance for Unguard. The Bitnami MariaDB Helm chart24 is defined as the source in
the blue highlighted area. The targetRevision field defines the chart version to be installed. It
is possible to define Helm values within the Argo CD Application resource to override the default
settings. In the case of MariaDB, the primary.persistence.enabled parameter was set to false, as

23https://github.com/MfCrizz/unguard-infra/tree/main
24https://github.com/bitnami/charts/tree/main/bitnami/mariadb
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shown in the red highlighted section. This leads to the database operating in in-memory mode, i.e.,
without storing the data in a file system. The data is not retained since Unguard is a demonstration
application that stores no crucial data.

Unguard’s Dependency on MariaDB Unguard utilizes MariaDB for both the user-auth-
service and membership-service, with both services expecting a running instance before starting.
The dependency on the database posed a problem, as Kubernetes lacks the ability to specify the
sequence in which pods are started. This was not an issue with the previous deployment approach,
as Skaffold handled the installation and was configured to deploy the database before Unguard. A
solution had to be found as the new approach utilizes Argo CD, and relying on Skaffold was not an
option anymore.

When deploying applications in distributed environments using Kubernetes, multiple compo-
nents are launched simultaneously, making it impossible to guarantee a particular launch order
[32]. There are several methods for managing dependencies in Kubernetes. One option is imple-
menting initContainers, which are specialized containers that run before the actual containers in
a Pod. These containers can execute commands to ensure that, for example, a database is accessible
and ready before the app container starts. This approach was initially chosen for Unguard but was
later replaced by another solution utilizing Argo CD.

While Kubernetes does not offer a means to manage deployment sequences, Argo CD does [26].
In Argo CD, there is a concept called Sync Waves. These enable the Application resources of Argo
CD to be assigned an integer that specifies the wave, or order, in which an application should be
installed. All the operations specified in one wave have to be completed before Argo CD starts the
next one. To utilize sync waves for Unguard, the database has been annotated with 1 and Unguard
with 2, as illustrated in Figure 15 in green. This instructs Argo CD first to install Maria DB and
then Unguard, thus resolving the dependency issue.

Figure 15: MariaDB and Unguard Argo CD Application.
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Lesson Learned While researching a solution to the dependency problem, it became clear
that the implementation of Unguard’s services was not always optimal for a cloud-native architec-
ture. Such architectures require special considerations for dealing with the dependencies between
their services. These services should be designed to be stateless and able to handle unresolved de-
pendencies without crashing. The issue was resolved using Argo CD’s sync waves as a workaround.
However, it is essential to keep in mind that Kubernetes does not offer a means to specify the launch
order of pods for any future extensions to Unguard.

Unguard The unguard-app.yaml is the Argo CD Application resource that defines the instal-
lation of Unguard. The section references the Unguard Helm chart, which can be found in the
GHCR. The targetRevision parameter specifies the version of Unguard to install, as shown in the
blue highlighted section of Figure 15 on the right side.

Sourcing the Values File from the Infrastructure Repository To configure Unguard
for different environments, engineers can provide additional value files to override the default values.
Since the infrastructure repository also contains the additional value files, Argo CD must be config-
ured to source them from this repository. Before version 2.6, Argo CD solely supported obtaining
value files contained within the chart. Fortunately, this has changed, and now it is possible to
obtain values from other sources. This is accomplished defining a secondary source, as illustrated
on the right side in Figure 15 in red. The infrastructure repository is listed as a second source, and
a reference to a variable values is established. This variable can serve as the origin of the values
file for Helm operations by Argo CD.

6.4 Argo CD Setup

Installing Argo CD on a Kubernetes cluster is straightforward, requiring only one command [26].
Next, the software must be made aware of the root Argo CD Application resource. This can
be accomplished using kubectl as depicted in Listing 17. Once applied, Argo CD immediately
shows the applications in the dashboard. As the intended state of having Unguard installed differs
from the current state without Unguard, Argo CD initiates the setup process for Unguard in the
cluster. First, MariaDB is installed, then Unguard. After a few seconds, the process stabilizes,
and everything is installed. The dashboard, as depicted in Figure 6, shows that all applications
are synchronized and healthy. The entire infrastructure is now declaratively defined, and Argo CD
monitors the infrastructure repository for changes. For example, if the target version of Unguard
is updated, Argo CD will immediately apply the changes and install the corresponding version of
Unguard.

Listing 17: Initiate the Setup of Unguard using ArgoCD
1 kubectl apply -f unguard -root.yaml -n argocd
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6.5 Unguard’s new GitOps Architecture

With all described components in place, Unguard now predominately adheres to GitOps principles.
The addition of a CI pipeline has automated the testing, building, and deploying of Unguard’s
artifacts. The infrastructure’s state is now declaratively defined in a Git repository. With Argo
CD, a GitOps tool automatically synchronizes the target and actual state of the cluster. Figure 16
depicts the new GitOps architecture for Unguard with all its components.
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Figure 16: Unguard’s new GitOps Architecture.

6.6 Quantification of the Speed Improvement

The following tests were conducted to quantify the installation speed gained with the newly devel-
oped solution using Helm compared to the previous approach using Skaffold. Testing was performed
on a Dell Precision 7670 laptop with an Intel i9-12950HX and 64GB of DDR5 RAM at 4800MT/s.
The Minikube cluster was configured with virtual 4 CPUs and 12 GB of RAM. For both approaches,
the Minikue cluster was newly created to eliminate any remnants of a previous installation. The
execution time of the commands was measured with time, a command line tool that summarizes
the use of system resources.

6.6.1 Testing Procedure

First, the Minikube cluster was deleted and recreated using the command provided in Listing 18
to ensure a controlled and clean test environment.

Listing 18: Delete and Recreate Minikube Cluster
1 minikube delete && \
2 minikube start --driver=kvm2 --addons=ingress --cpus=4 --memory =12GB --disk -size =30GB

Unguard was then installed with Skaffold using the command shown in Listing 19. Using Skaf-
fold, the container images must be created as they are not present on the cluster. With time, the
elapsed time needed by this procedure was captured.

Listing 19: Measure Time for Instalation of Unguard using Skaffold
1 time skaffold run -p localdev -minikube
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To measure the time it takes to reinstall Unguard without making any changes to the container
images, in other words, allowing Skaffold to reuse the images already created, Unguard was deleted
with the command in Listing 20 and then reinstalled with Skaffold using the command from the
previous step, as shown in Listing 19.

Listing 20: Remove Unguard using Skaffld
1 skaffold delete

Next, the new approach with Helm was measured. The Minikube cluster was reinstalled with the
command from Listing 18 to ensure the same starting conditions as in the previous measurement.
Unguard was installed using the command presented in Listing 21. The duration for Unguard’s
complete setup was once again measured with time.

Listing 21: Measure Time for Instalation of Unguard using Helm
1 time ( \
2 helm repo add bitnami https :// charts.bitnami.com/bitnami && \
3 helm install unguard -mariadb bitnami/mariadb \
4 --set primary.persistence.enabled=false --wait && \
5 helm install unguard oci:// ghcr.io/dynatrace -oss/unguard/chart/unguard --wait )

Similarly, to measure the time required to reinstall Unguard using the new Helm approach, first,
Unguard was uninstalled using the command shown in Listing 22 and then reinstalled using the
command shown in Listing 21. In this scenario, the images are already on the cluster, and Helm
simply must recreate the Kubernetes resources.

Listing 22: Remove Unguard using Helm
1 helm uninstall unguard && \
2 helm uninstall unguard -mariadb

6.6.2 Results

The results for the measurements are presented in two tables. Table 2 displays the time elapsed for
the initial installation, whereas Table 3 shows the time elapsed for a reinstallation of Unguard.

Approach Elapsed Time

Previous: Skaffold 710.33 s
New: Helm 187.56 s

Difference 522.77 s

Table 2: Elapsed Time for an Initial Installation.

Approach Elapsed Time

Previous: Skaffold 52,256 s
New: Helm 39,580 s

Difference 12.676 s

Table 3: Elapsed Time for a Reinstallation.
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The percentage improvement in the time required to install Unguard was computed using Equa-
tion 1.

tprev − tnew
tprev

(1)

First, the difference between the time needed by the previous approach tprev and the time needed
for the new approach tnew was calculated. The result is then divided by the time taken for the
previous approach tprev.

Initial Installation
tprev − tnew

tprev
=

710.33s− 187.56s

710.33s
= 0.73595 (2)

For an initial installation, as presented in Table 2, the value for tprev is 710.33 seconds, and the value
for tnew is 187.56 seconds. The newly implemented solution is 522.77 seconds faster, corresponding
to a 73.595 percent reduction in the time required to install Unguard. The speed improvement can
be explained by the fact that in the new solution with Helm, the container images do not have to
be built and can be downloaded instead.

Reinstallation
tprev − tnew

tprev
=

52.256s− 39.58s

52.256s
= 0.24257 (3)

In the case of a reinstallation, as presented in Table 3, the value for tprev is 52.256 seconds, and
the value for tnew is 39.58 seconds. The newly implemented solution is 12.676 seconds faster,
corresponding to a 24.257 percent reduction in the time required to install Unguard. This result
cannot be explained so easily. The container images are already available for both methods. Skaffold
is likely slower because it must first check if the container images need to be rebuilt or can be reused,
resulting in a few seconds lost compared to Helm.

6.7 Benefits of the Applied GitOps Principles

The new implementation has several advantages over the previous one as the following list shows:

• Using a Helm chart instead of Kustomize makes it much easier to understand how the final
rendering of the Kubernetes resources is created. All the resources are in one repository and
have no nested structures. Unguard is configured by obtaining various value files rather than
applying multiple patches in a specific order from different repositories.

• Unguard’s Helm chart simplifies the installation process significantly. Engineers and non-
engineers alike can easily install Unguard without Skaffold and without having to build it
themselves.

• The deployment or upgrade process is automated, reducing the risk of human error.

• Argo CD enhances the observability of the cluster’s and Unguard’s status by providing a
dashboard.
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• The availability of prebuilt container images for Unguard offers numerous benefits:

- The images do not need to be rebuilt every time a new cluster is installed, or an existing
cluster is upgraded. Instead, the images can be downloaded, significantly speeding up
Unguard’s installation process and reducing unnecessary resource consumption. The
speedup is quantified in Section 6.6

- The installation time now depends on the internet connection’s download speed, which
is advantageous for clusters in the cloud or on development machines in an enterprise
environment, where internet speeds are typically adequate.

- If images are already downloaded and cached, reinstalling Unguard takes only seconds.

- Builds of the same version of Unguard are reproducible.

- Since the images contain all dependencies and are hosted on the GHCR, the Docker Hub
rate-limiting issue is resolved.

• The desired cluster state is declaratively defined and stored in a Git repository, providing
various benefits:

- It is immediately apparent which version of Unguard is installed, with what configuration,
on which cluster.

- The engineers need not worry about the steps required to configure and set up Unguard.
They merely have to specify what the final result should look like, and Argo CD will
handle its realization.

- Code stored in a Git repository offers the benefits of a version control system, such as
enhanced code quality through code reviews and pull requests, providing traceability of
code changes, and fostering collaboration between engineers.

6.8 Drawbacks of the Applied GitOps Principles

By contrast, there are also a few disadvantages to this approach:

• Additional tools like Argo CD and Helm must be installed and learned by the engineers.

• Helm chart templates introduce a new syntax. For complex applications and configurations,
this syntax can be hard to read.

• The GitOps architecture has increased the complexity of the system.

• Three commands as depicted in Listing 21 are necessary to install Unguard using the Helm
chart.
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7 Security Implications

Since Unguard intentionally includes vulnerabilities that provide access to the Kubernetes cluster,
and ArgoCD is now installed with elevated privileges, new attack vectors may be present. To analyze
potential threats, a threat modeling session was conducted. This chapter explains the concept of
threat modeling, provides a description of the methodology used, and outlines the session’s results.

7.1 What is Threat Modeling?

Threat modeling is the process of analyzing a system for weaknesses [33]. Ideally, this is an integral
part of the development process and is conducted regularly to identify risks as early as possible.
Threat modeling should help to understand how a system design should be changed to reduce the
risk of weaknesses.

According to Adam Shostack, an expert in threat modeling, the process should address four
critical questions [34]:

1. What are we working on?
Understand the current state of the system and its development goals.

2. What can go wrong?
With an understanding of the system, identify possible security threats.

3. What are we going to do about it?
Identify steps to minimize the liability resulting from the issue identified in the previous step.

4. Did we do a good enough job?
Reflect on the process and identify if the threat modeling mitigated the threat effectively.
This allows the process to be refined for future iterations.

Answering these questions should help evaluate whether the threat modeling effort was success-
ful. If these questions cannot be sufficiently answered, it may be advisable to consider an alternative
methodology.

7.2 Threat Modelling Methodologies

Many threat modeling methodologies are available, all with distinct features and specific focuses
[33]. They all have advantages and disadvantages, so it’s wise to experiment with various approaches
to determine the most appropriate one. This paper presents the STRIDE model as it was utilized
in the conducted session.

7.2.1 STRIDE

STRIDE was formalized at Microsoft in 1999 by two engineers, Koren Kohnfelder and Praerit
Garg, in their letter called The Threats To Our Products [35]. STRIDE is a mnemonic for the six
categories of security threats in Table 4. The table also provides a brief explanation and example
for each type.

A threat modeling session with STRIDE begins with creating a representation of the system
that can help examine its characteristics. The most common way is to create a Data-Flow Diagram.
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Name Explanation Examples
Spoofing Pretending to be something or someone. Replacing a dll by a malicious dll.
Tampering Modifying something. Injecting malicious dll into memory.
Repudiation Denying responsibility for a action or event. Performing action and then deleting logs.
Information Disclosure Viewing unauthorized information. Data breaches.
Denial of Service Absorbing all resources and stalling operation. Starveing a process by absorbing all resources.
Elevation of Privilege Performing an unauthorized action. Buffer overflow to gain higher privileges.

Table 4: The STRIDE Methodology.

7.3 Data-Flow Diagram

A Data-Flow Diagram (DFD) illustrates the system’s components (elements) and their communica-
tion (data flows). It also includes trust boundaries that distinguish areas of the system with varying
trust levels. Circles or rectangles typically denote elements, while arrows denote communication.
Red dotted lines or boxes indicate trust boundaries. Figure 17 depicts the diagram, which was the
result of the modeling session. It displays the Kubernetes cluster with Unguard and Argo CD. On
the right-hand side are the additional components introduced through the implemented GitOps
approach.
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Figure 17: Data-Flow Diagram of Unguard.

7.4 Applying STRIDE

The next stage involved reviewing the diagram and, for every trust boundary crossing, developing
possible attack scenarios for each STRIDE component. The diagram’s numbered stars indicate the
identified threats and their corresponding trust boundaries. Table 5 lists the threats and potential
countermeasures identified during this process. Since the emphasis was on analyzing the security
implications introduced by GitOps, the identified threats focused on the new components.
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Name Description
Possible
Countermeasures

1 Default Argo CD credentials
The default credentails of
Argo CD can be easily accesed.

Delete default credentials.

2 Impersonate other Argo User/admin
JWT tokens are used,
which can potentially be forged.

Log actions from users.

3 Compromise image registry

An attacker can push a
compromised image to
the registry and these
changes are deployed in cluster.

Restrict write access
to registry.

4 Expose secrets
The secrets are not encrypted,
only base64 encoded.

Encrypt the secrets.

5 Lateral movement from other app

If another app in the same
cluster is compromised,
the Argo CD pods are
directly reachable.

Create network policy
to prohibit ingress from
other Namespaces.

6
Compromised Service-Account/
Role-Binding (of other apps)
can modify Argo CD

ArgoCD can be misconfigured
arbitrarily.

Audit Kubernetes API requests.

7
Compromised infrastructure repository
can modify Argo CD

ArgoCD can be misconfigured
arbitrarily.

Require/audit pull requests.

Table 5: Identified Threats.

7.5 Learnings

This session, in combination with the research for this thesis, was educational as it allowed us
to gain a fundamental understanding of the concepts and procedures of threat modeling. It is
beneficial for future work because it highlights the importance of security considerations from the
very beginning of the whole software development lifecycle. However, since it was the first session for
most participants, the findings for Unguard were not particularly sound but rather an opportunity
to play around and to get familiar with the concepts.

The STRIDE methodology chosen is not ideally suited for security novices, as it is required to
understand what can be a threat and how that threat, if exploited, becomes a vulnerability [33].
For example, one needs to know what spoofing is and what and how something can be spoofed.
Other methodologies might be better suited for beginners.

Looking back to the four questions in Section 7.1, we succeeded in answering the first one:
What are we working on? After the session, we gained a better understanding of Unguard and its
development goals and, hence, a better idea of what we are working with. The second and third
questions could not be answered sufficiently, as most participants were security novices and lacked
the necessary knowledge to use the STRIDE methodology. Finally, answering the fourth question
(Did we do a good enough job? ) clarified that more extensive security-related knowledge is needed
to use the STRIDE methodology effectively. Alternatively, more beginner-friendly methods could
be used in future work. Only with these alterations it would be possible to do a good enough job.
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8 Limitations and Future Work

Section 6 outlines the process of implementing the GitOps principles in Unguard. However, the
implemented solution has limitations that require future work.

8.1 Automatically Update Chart Version

The GitOps principles state that any changes made to the source code should be automatically
applied to the application. However, for Unguard, one step has not been implemented to meet this
requirement. After the release of a new version of Unguard, the infrastructure repository must still
be adapted manually to the updated version. To implement this principle in Unguard, this work
suggests two potential solutions:

• First, this could be implemented in the CI pipeline. After pushing the artifacts, an automated
pull request could be opened in the infrastructure repository to update the version. However,
accessing and creating a PR in the private infrastructure repository would require significant
additional implementation effort.

• The second solution involves using Renovate25, a tool designed to identify and suggest updated
artifacts automatically [36]. This option would be a perfect fit, as it can be installed as
a GitHub app for the private infrastructure repository and requires minimal setup. The
drawback of this method is that it would necessitate an additional tool.

8.2 Implement Sophisticated Helm Test

The Helm test implemented in this work is rudimentary since it only checks whether the frontend is
reachable. This does not ensure that this or the other services work as expected. A better solution
would be to use the already existing user-simulator as a testing framework. This service performs
all the tasks that are available in Unguard and is ideal to ensure Unguard’s functionality. This
approach was implemented in the Helm test’s first iteration, but problems were encountered. For a
helm test to fail, the container must exit with a non-zero exit code. The user simulator consistently
terminated successfully despite failed tasks. Further work is required to resolve this issue. In the
meantime, the solution presented in this paper has been developed.

8.3 Dynamic Kubernetes Resource Names

Unguard’s Kubernetes resource should match the Helm release name chosen during the installation
of Unguard. Currently, this is not the case. All resources have their names hard-coded. It is
possible to include this functionality using the templating language.

The work presented in this thesis provides the benefits of GitOps to Unguard.

25https://docs.renovatebot.com/
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9 Conclusions

This thesis focused on applying GitOps to the cloud-native application Unguard, which is an in-
tentionally insecure microblogging platform that serves as a testing ground for Dynatrace.

Prior to adopting GitOps, deploying and upgrading Unguard was a tedious and error-prone
manual process that utilized Kustomize and Skaffold. Each time engineers installed or updated
Unguard, they had to connect to the correct cluster and manually start the building and deployment
process with Skaffold. Furthermore, it was necessary to provide Skaffold with the appropriate cluster
configuration, which was a common cause of errors. Skaffold built all images from scratch for every
installation, resulting in unnecessary resource expenditure. Kustomize was used as a configuration
management tool; however, Unguard implemented a nested Kustomize structure spanning multiple
repositories, which made it challenging to keep an overview of the final Kubernetes manifest’s
rendering.

GitOps, on the other hand, relies on automation to synchronize the Kubernetes infrastructure
with a defined state in a Git repository, using Git as the single source of truth. In its most extreme
form, the GitOps model even prohibits manual changes to the infrastructure. Therefore, instead
of making manual changes, an engineer adjusts the configuration files that represent the intended
state which are then automatically applied to the cluster by software agents. Using Git as a version
control system for both application and infrastructure code improves traceability, collaboration,
auditability, and overall code quality.

To apply GitOps principles in Unguard, a Helm chart was developed as a prerequisite, which
substantially simplifies the installation process. Both engineers and non-engineers can install Un-
guard without Skaffold and without building Unguard themselves since the chart uses pre-built
container images for Unguard’s services. This eliminates the need to rebuild the images during
every installation, saving a significant amount of time. A new Git repository containing the defined
state of Unguard’s infrastructure was created, as prescribed by GitOps principles. The actual state
is automatically synchronized with the desired state by the GitOps tool, Argo CD.

In conclusion, Unguard now predominantly adheres to GitOps principles. The implemented
solutions have facilitated the developers’ workflow and reduces the risk for human error. All of the
implemented changes described in this thesis can be reviewed in the corresponding pull request26

in Unguard’s repository as well as in the newly created infrastructure repository27.

26https://github.com/dynatrace-oss/unguard/pull/47
27https://github.com/MfCrizz/unguard-infra/tree/main
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