

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

Author

Stefan Haslhofer

Submission

Institute for System

Software

Thesis Supervisor

Dipl.-Ing. Dr. Markus

Weninger, BSc

External Thesis Supervisor

Dipl.-Ing. Dr. Michael

Aichinger

January 2023

Sustainability

Data Warehouse -

A Solution for

Global Warming

Data Gathering,

Enrichment and

Processing

Bachelor’s Thesis

to confer the academic degree of

Bachelor of Science

in the Bachelor’s Program

Informatik

Bachelor's Thesis

Global Warming Scoring Solution for Sustainable Investment

Student: Stefan Haslhofer

Advisor: Dipl.-Ing. Dr. Markus Weninger, BSc

 uni software plus GmbH Supervisor: Dipl.-Ing. Dr. Michael Aichinger

Start date: March 2022

Sustainability and as part of it climate friendly/neutral investing is getting evermore important for private
and institutional investors. As such, there is a need for metrics that classify the sustainability of investment
instruments based on the behavior of the companies behind them. In a collaborative project,
uni software plus GmbH develops a solution to measure a company’s global warming potential based on
its greenhouse gas emissions and other metrics.

The goal of this bachelor thesis is to model a database and implement services suitable to store provided
market data as well as transforming it into an understandable format. An external model will then accept
this format and calculates the respective temperature score, which subsequently also has to be stored in
the database. This system will be containerized and deployed to the Google Cloud, therefore needing to
use resources as efficient as possible in order to minimize costs.

Following tasks must be achieved:

• Design of a cloud-ready micro-service architecture and database.

• Optimization of performance and resource usage/parallelization of different services in order to mini-
mize costs.

• Implementation of a service loading and saving market data as well as providing endpoints to send
and receive information to and from the temperature score data model

• Administration of a cloud application

• Ensure scalability in order to support multiuser operation

• (nice to have) small frontend to display the calculated metric

Modalities:
The progress of the project should be discussed at least every two weeks with the company supervisors and at
least once per month with the advisor. A time schedule and a milestone plan must be set up within the first 3 weeks
and discussed with the advisor and the supervisors. It should be continuously refined and monitored to make sure
that the thesis will be completed in time. The final version of the thesis must be submitted not later than 31.09.2022.

Dipl.-Ing. Dr.

Markus Weninger, BSc

Institute for System Software

P +43-732-2468-4361

F +43-732-2468-4345

markus.weninger@jku.at

Abstract

With climate change posing an increasing threat the need for more sustainability is a pressing
topic in nearly all fields of our economy, including the banking sector. For a growing number of
investors environmental friendliness is an important decision factor.

Therefore, we introduce the Tempscore indicator that informs about a company´s warming
potential. The warming potential is the approximated amount in degrees Celsius the earth will
heat up until a certain year if the entirety of the global economy changes its emission output
by the same percentage in relation to its sales volume as the rated company. Our solution is
designed for smaller regional financial service providers that do not have the means to implement
a more sophisticated eco-friendliness rating themselves.

In this thesis we present the technical aspects of a system built to import and process large
amounts of market data and environmental data while at the same time staying performant and
scalable. To achieve this we use the Java Spring framework and in particular the Spring Batch
library. With Spring Batch we are able to divide our indicator calculation into multiple so-called
partitions which act in parallel, thus reducing execution time. Although the mathematics behind
the calculation is not part of this thesis, we will still clarify the basic concepts.

Kurzfassung

Die Klimaerwärmung stellt eine immer größer werdende Gefahr für unser aller Wohl dar, weswe-
gen das Bedürfnis nach Nachhaltigkeit in fast allen Wirtschaftsbereichen an Bedeutung gewinnt,
darunter auch der Finanzsektor. Für eine steigende Anzahl von Investoren ist die Umweltfre-
undlichkeit ein wichtiger Entscheidungfaktor.

Deshalb führen wir den Tempscore Indikator ein, der Aufschluss über das Erwärmungspoten-
zial einer Firma gibt. Das Erwärmungspotenzial ist der geschätzte Wert in Grad Celcius, um den
sich die Erde bis zu einem gewissen Jahr erwärmen würde, wenn die gesamte Weltwirtschaft ihre
Emissionsabgabe um die gleichen Prozentpunkte im Verhältnis zum Umsatz wie das bewertete
Unternehmen ändert. Unsere Lösung ist für kleinere regionale Finanzdienstleister entwickelt wor-
den, die nicht die richtigen Mittel besitzen um selbst ein ausgeklügeltes System zur Bewertung
der Klimafreundlichkeit zu implementieren.

In dieser Arbeit präsentieren wir die technischen Aspekte eines Systems das gebaut worden ist,
um eine große Anzahl von Markt- und Umweltdaten zu verarbeiten und dabei noch performant
und skalierbar bleibt. Dazu verwenden wir das Java Spring Framework und insbesondere die
Spring Batch Bibliothek. Mit Spring Batch ist es uns möglich, die Berechnung der Indikatoren in
mehrere sogenannte Partitionen aufzuteilen, die parallel arbeiten und so die Laufzeit verbessern.
Obwohl die Mathematik hinter der Berechnung nicht Teil dieser Arbeit ist, werden wir uns die
grundlegenden Konzepte trotzdem anschauen.

i

Table of Content

Contents

Abstract i

Kurzfassung i

1 Introduction 1

2 Background 1
2.1 Sustainable Investment . 1
2.2 Integration into Existing Products . 2
2.3 Terminology . 2
2.4 Indicator . 3

3 Architecture 3
3.1 General Design . 3

3.1.1 Importer . 5
3.1.2 Calculator . 5
3.1.3 Exporter . 6

3.2 Lifecycle . 6
3.2.1 Trigger . 6
3.2.2 Data Pipeline . 7

4 Implementation 9
4.1 Technologies . 9
4.2 Data Import . 9

4.2.1 File Detection . 10
4.2.2 Data Extraction . 12

4.3 Temperature Score Calculation . 14
4.3.1 Partitioning . 14
4.3.2 Partition Deployment . 18
4.3.3 Calculation Processor . 18
4.3.4 Indicator Computation . 20

4.4 Result Export . 20

5 Evaluation 23
5.1 Performance Test . 23
5.2 Robustness . 23

6 Current Limitations and Future Work 25
6.1 Cloud Integration . 25
6.2 Further Improvements . 25
6.3 Areas of Application . 25

ii

7 Conclusion 27

Literature 28

iii

1 Introduction

Sustainability is an important topic in all areas of economics, politics, as well as our daily lives.
Global warming is an omnipresent matter in worldwide news; weather anomalies such as extreme
heat or heavy storms become more intense and glaciers alongside other bodies of ice decrease
rapidly in size [3]. Financial institutions recognize the need for climate friendly investment op-
tions for their private and institutional customers but conclusive metrics rating an investment’s
sustainability are difficult to find and the data situation is sparse. Furthermore, a sophisticated
mechanism that is able to assess large quantities of investment options is cost intensive and time
intensive and additionally requires software engineering know-how. Such undertakings can only
be accomplished by large corporations with dedicated software departments.

Thus, we implemented a temperature warming scoring solution (Tempscore) that allows small
and mid-sized financial service providers to classify the eco-friendliness of their assets. Our so-
lution enables investors to make purchase decisions based on a score that indicates how much
degrees Celsius the earth would warm up until a certain year if the entire world economy increases
or decreases its annual emissions by the same percentage as a particular company. The score
also takes the change in revenue of the rated company into account. This means that a company
that manages to reduce its emissions despite a strong economic growth may be rated better than
another company that lowers its emissions even stronger but also experiences a decline in sales
volume.

This paper gives an overview over the technical aspects of a system that enables us to handle
large amounts of company data and market data that we can utilize to get a meaningful sus-
tainability rating. We are going to have a look into the extraction and the processing of raw
data as well as the interaction between distinct components of the system. Additionally, we will
briefly inspect the system’s performance and the role of parallel execution. Although this thesis
only revolves around the data refinement and micro service interactions behind the actual indi-
cator calculation itself, we will still examine the basic mathematical concepts of the necessary
computations.

2 Background

This section explains why sustainability is important for the finance sector and the economy
in general and why we decided to set foot on this specific topic. We will further illustrate
how the results of this project may influence and interact with other products of uni software
plus GmbH. Beyond that, we will inspect the basic mathematical concepts that lead us to our
Tempscore indicator.

2.1 Sustainable Investment

Sustainability describes a safe co-existence between us humans and nature. A sustainable society
minimizes the damage done to the environment and pushes for a resortful handling of natural
resources in all aspects of live. Looking at the bigger picture, our economy plays a large role
in global warming and climate change. As private individuals or corporate entities we are able

1

to pressure global markets to become more eco-friendly through consumer habits. Structures
provided by our free market allow us to directly support companies with investments of our
own capital. With increasing climate awareness around the world the demand for sustainable
investments has grown steadily over the past decades which makes it a valuable asset for all
industries including the banking sector. However, being able to rate companies by their eco-
friendliness is difficult and only a few solutions exist which often still require some form of
manual data processing. Hence, we decided to build an application that is able to provide an
automated indication for a company’s ecological impact based on market data, environment data
and company data.

2.2 Integration into Existing Products

Uni software plus GmbH develops multiple products in the financial sector especially for small and
middle sized financial institutions. Some of these products already include calculated indicators
to classify the investment risk of an instrument based on its attributes. The goal of our Tempscore
solution is to not only provide it as a standalone service, but to extend these established systems
with our temperature rating.

2.3 Terminology

Instrument Financial instruments are contracts between two parties that can be obtained and
traded in exchange for money such as stocks, bonds or even currency swaps.

ISIN (International Securities Identification Number) A twelve-digit globally unique alphanu-
meric string identifying an instrument traded on a stock exchange.

Market Data All the information, statistics, and metrics that exist for an instrument.

Company Data In this thesis the term company data means every bit of information on the
company itself and not just its representative instrument on the stock market. Environment data
concerning a certain company, such as produced CO2 emissions, fall into this category.

Environment Data Information representing the current state of our surroundings in num-
bers, for example global CO2 emissions or temperature delta per year.

2

2.4 Indicator

To understand the application to its full extent we must clarify at least the basic mathematical
concepts our computation is built on. Remember, the Tempscore indicator demonstrates the
eco-friendliness of a company. It reveals to investors how many degrees Celsius the earth’s tem-
perature will approximately increase until a target year (e.g. 2050) if the global economy alters
its emission output at the same percentage as the business in question.

Our approach is more sophisticated than simply evaluating a company’s sustainability by
the absolute number of produced tons of CO2. We consider the ratio of emissions to revenue
(corrected by inflation) over the last two years and calculate the relative change. We assume
that the relative change remains consistent in the future. Based on the current yearly company
emissions and the relative change (e.g. 4% decrease per year) we can approximate future annual
emissions. At last we are able to accumulate the approximated annual emissions up to the target
year and apply the result to a climate model representing the temperature increase per gigaton
(GT) CO2. [1]

If the company manages to keep its relative emission change lower than its revenue change
it will obtain a more favourable rating. Therefore, a fast growing corporation which inevitably
intensifies its ecological footprint can still be classified more environmentally friendly than a
smaller business that did not lower its emissions in equal measures.

3 Architecture

This section examines the individual parts of the software system behind the temperature score
calculation and how these parts interact with each other. Moreover, we will inspect the route
between the application’s different services that raw packages of market data must traverse in
order to get transformed into meaningful results.

3.1 General Design

Our solution mainly consists of three logically independent processes: a data importer, a calcu-
lator and a result exporter, which all make use of multiple components. The following sections
explain these main processes and their components. Figure 1 depicts the system in a finer gran-
ularity and shows the connections between all parts. The ensuing list briefly outlines all major
program components:

1. A file transfer protocol (FTP) server stores input data received as files before it is
imported into our system. The FTP serves as a landing zone and can therefore be regarded
as an interface between outside data providers and the Tempscore application.

2. The Tempscore DB is a Postgres DB used to store imported and transformed data as well
as calculation results.

3. Calculation partitions are the centerpiece of our calculation process. They receive already
imported data and transform them into meaningful indicators. Multiple partitions work in

3

Figure 1: Overview of the Tempscore system. The arrows show possible directions of the data
flow between individual components. The dashed lines roughly split the system into three groups
of components. Each group is utilized by one of the three main processes described in Section 3.1
(i.e., importer, calculator, exporter).

parallel which divides workload into smaller batches. Each partition is started as a stan-
dalone Java process running in its own JVM. As mentioned in Section 4.3.3 the calculation
partitions call a python script to calculate the indicators.

4. In an effort to centralize management of components in the Tempscore solution we im-
plemented a so-called batch controller (BC). It directs the bulk of the data flow in the
importer process and calculator process. Additionally, the BC supplies other services with
result data.

5. The commons module holds metadata regarded as general knowledge within the Tempscore
application, such as database layout, data transfer object (DTO) structures, and stored

4

queries. Other components can use this metadata to exchange data with one another in a
correct format or to perform predefined read and write operations on the database.

6. With the intention to make indicators such as Tempscore available to external applications
we created the gateway service (GS). It serves as an independent interface that can be ad-
justed to support multiple types of indicators without adapting the established calculation
process.

7. In order to guarantee full independence of the GS from the rest of the application we set
up a separate indicator database storing indicators for further export.

8. A potential graphical user interface (GUI) displays indicators provided by the GS.
However, the realization of a GUI is outside of the scope of this thesis.

9. This detail of Figure 1 hints the possibility of computing other indicators in the future. A
new controller completely unassociated with the BC of our current Tempscore solution will
then be able to post its own indicator to the GS.

10. The GS exports the indicator to external bank systems. A bank system (or customer
system) represents applications outside the Tempscore solution that take indicators as
input.

Note that it is possible for a single component to be used by more than one of the three main
processes. Therefore, processes overlap occasionally on a component level abstraction.

3.1.1 Importer

The importer process uses the FTP server, BC, commons module, and Tempscore DB. At first
data providers transmit files filled with company data, market data and environment data that
we store on the FTP. The BC subsequently fetches these files and starts transforming their
contents into a format suitable for our database. In general this means the BC filters out unim-
portant information and converts the raw data into the relational scheme of our database in
order to store it for further use. All metadata about the database’s structure originates from the
commons module.

Data files themselves are depending on the provider either in .csv or .xlsx format. A
download via an API is only possible in some cases, hence we decided to stick solely to the file
sources. Most of the input data reaches our system in .xlsx format, whereas company data
arrives as .csv.

3.1.2 Calculator

The calculator computes the Tempscore indicator based on previously imported data. The cal-
culation itself is conducted by multiple calculation partitions at the same time in order to fasten
the process. Besides, the BC acts as a central management instance and gets to decide how
many partitions are started up based on the quantity of instruments we want to asses with a
Tempscore rating. Furthermore, the BC sends packages including the parameters necessary for
the indicator calculation to each partition. After a partition finishes its computations, it saves

5

the results directly back into the database. Multiple open connections to our Tempscore DB
have drawbacks as they are potentially harder to monitor. On the other side they significantly
reduce time consumption. In Section 4.3 we will further discuss how we are able to orchestrate
a large number of partitions.

The calculator can not exist completely without the importer because it needs a filled database
to be of use. Nonetheless it is largely independent on a logical level. This means the calculation
can be executed alone at any time, given the Tempscore DB already holds useful data.

3.1.3 Exporter

Exporting the results of the calculator is the third main part of our application. As implied by
Figure 1 this process is not only logically independent from the importer and the calculator but
also physically divided as it uses a separate database. This is necessary due to the requirement
to expand the exporter for supporting a new indicator at any time without the need to alter
anything beyond the GS and the indicator database.

In our current solution the BC posts the results to the GS. Subsequently, the GS then persists
the results in a database solely made to store different types of indicators. If we want to add a
new indicator besides Tempscore we would need to add an endpoint where a different BC can
send its data to. The BC also serves as an API for external applications and even a small GUI
we are going to build for showcase purposes. However, the GUI is not part of this thesis.

3.2 Lifecycle

Our three main processes not only differ in their tasks but also in their active times. This
section discusses the trigger mechanisms of each process. In addition we investigate the data
flow between the components in more detail.

3.2.1 Trigger

Since the data files do not reach the FTP server at a fixed time we would need to trigger the
importer ourselves shortly after a file upload to make sure processing commences as fast as pos-
sible. However, one of our requirements is to reduce the manual interactions with the system
to a minimum. Thus, we equipped the BC with a file watcher that quickly reacts to new files
arriving on the FTP. The file watcher reads in file contents and passes them on to other services
within the BC for further refinement which starts the import.

The calculation process is either started by the BC directly in connection with the import
process (after new file contents from FTP are stored) or can optionally be initiated manually
if needed. The manual start is used for test purposes and as a safety feature to recover from
possible failures. For example if the calculation halts due to corrupted import data needing to
be modified by hand, a new calculation would only be possible after the arrival of new data files.
Similarly, the export process begins automatically after the calculation or alternatively by hand.

6

3.2.2 Data Pipeline

In general, data passes from the importer over the calculator to the exporter. Figure 2 depicts
this information flow in depth on a component level:

At first the file watcher in the BC (1) reads in files landing on the FTP and (2) persists the
transformed contents to a database. Afterwards, the BC (3) queries the now refined data that
can be handed over to the calculator. It further starts up multiple partitions to compute the
indicators (as mentioned in Section 3.1.2), splits the data into smaller packages and (4) deploys
each package to a distinct partition. Results take a straight route without any components
in between and are (5) returned directly to the database. The BC then collects the results
and (6) posts it to the GS. Similar to the BC the GS (7) persists to and (8) queries from its
dedicated database. But in addition (9) provides all indicators for external use through various
API endpoints.

7

Figure 2: Visualization of the data pipeline within the Tempscore application. The numbering
shows the successive steps in between the raw input data and the final indicator. The direction
of the arrows resembles the direction of the data flow.

8

4 Implementation

To further examine our Tempscore solution from a technical perspective we will dive into the
details of the implementation. This section briefly discusses the technologies we built our solu-
tion on and afterwards analyzes the most crucial parts behind the data import, the indicator
calculation and the result export on the source code level.

4.1 Technologies

Spring Most of our source code is written in Java assisted by the Spring Framework. Spring
is one of the most sophisticated Java frameworks currently available and offers a broad variety
of tools supporting object relational mapping (ORM) functionality, batch operations as well
as RESTful web services [2] out of the box. Additionally, our file watcher uses the Spring Inte-
gration library.

Every Spring application has a so-called application context that instantiates and manages
objects. A Java object registered within the application context is called a Spring bean. To keep
it simple we call a Spring bean just bean. A method annotated with @Bean is executed at startup
and returns an object that gets registered in the application context (i.e. it becomes a bean). [2]

Docker and Kubernetes To be able to orchestrate our different components and partitions
in the cloud we use Docker to containerize our application in combination with Kubernetes.
Kubernetes is an open source system used to administer and scale these containers. The support
for scaling is one key aspect of achieving parallel calculation in multiple partitions in the cloud.

Flyway Flyway is an open-source migration tool we are using to roll out database updates
as well as the initial schemes of our Tempscore DB and Indicator DB. All migrations are listed
within the commons module.

4.2 Data Import

This section presents the software features used by the importer process. It covers how to realize
a file watcher with Spring and inspects the logic behind the file parser. Figure 3 showcases that
all of the file processing logic as well as the management of the database connection is located
within the BC. Additionally, the BC is responsible for partitioning the calculation process we
examine in Section 4.3. The commons component features the database structure and other
metadata.

9

Figure 3: Most crucial modules for data import and indicator calculation. The dashed connectors
imply where each functional program element is situated.

4.2.1 File Detection

We created our file detection mechanism based on the Spring Integration’s IntegrationFlow
class. It will be registered in the application context as a bean. In general the file detection
includes the following components:

• The SessionFactory interface, which creates Session objects that enable us to read re-
mote file contents via an InputStream. The current solution employs the DefaultSftpSes-
sionFactory that also allows us to use more secure SFTP connections.

• The SftpInboundChannelAdapterSpec poses as a wrapper object for adjustable settings
such as the path to the remote directory a target file is expected to be in. It takes a
SessionFactory as argument and applies the specified settings to it.

• The SourcePollingChannelAdapterSpec defines the polling policy. The polling policy is
the interval in which the file watcher checks for new files.

• A handler method specifying import actions when the IntegrationFlow detects a new file
during a poll.

10

Listing 1 shows our realization of a file watcher. The file watcher consists of two methods.
Both are annotated with @Bean, which means they get executed on application startup and the
application context will manage the returned objects as described in Section 4.1.

Note that because of the @Bean annotation a DefaultSftpSessionFactory bean is registered
in the Spring application context (line 1). At first we define a method that returns the DefaultS-
ftpSessionFactory (line 2). The DefaultSftpSessionFactory has the ability to open a more
secure SFTP connection. Within the method we instantiate the DefaultSftpSessionFactory
(line 5). Afterwards we set crucial connection properties such as: private SFTP key file, host-
name, port, and username (line 6 to line 10). At last, we return a DefaultSftpSessionFactory
object (line 13).

The second method creates an IntegrationFlow object and takes a DefaultSftpSession-
Factory as parameter (line 17). Spring recognizes the DefaultSftpSessionFactory bean in
the application context and is able to pass it as an argument (i.e. Spring injects the DefaultS-
ftpSessionFactory bean into the second method). We need to know where to scan for arriving
files on the FTP. Additionally, we have to copy new files from the FTP to the local machine for
further processing.

Hence, we create a SftpInboundChannelAdapterSpec object that encapsulates our Default-
SftpSessionFactory bean, the local directory as well as the FTPs remote source directory /ghg
(line 19 to line 20). We pass the SftpInboundChannelAdapterSpec object to the Integra-
tionFlow (line 22) alongside a poller that sets the interval in which we scan the FTPs remote
directory for new files to ten seconds (line 23).

Based on all this, the IntegrationFlow now automatically opens a message channel used for
the data transfer. We call such a construct inbound adapter. Moreover, we are able to specify
import actions to perform when we indeed discover a fresh file (line 24 to line 26). These actions
will be explained in more detail in Section 4.2.2.

11

1 @Bean
2 De fau l tS f tpSe s s i onFacto ry de f au l tS f tpSe s s i onFac to ry () {
3 /* ... */
4 var de f au l tS f tpSe s s i onFac to ry
5 = new Defau l tS f tpSe s s i onFacto ry () ;
6 d e f au l tS f tpSe s s i onFac to ry
7 . setPr ivateKey (/* path to private sftp key */) ;
8 d e f au l tS f tpSe s s i onFac to ry . setHost ("localhost") ;
9 d e f au l tS f tpSe s s i onFac to ry . s e tPor t (2 2) ;

10 de f au l tS f tpSe s s i onFac to ry . se tUser ("user1") ;
11 /* ... */
12
13 return de f au l tS f tpSe s s i onFac to ry ;
14 }
15
16 @Bean
17 Integrat ionFlow ghgDataInbound (De fau l tS f tpSe s s i onFacto ry f t pS f) {
18 /* ... */
19 SftpInboundChannelAdapterSpec spec
20 = getSpec (f tpS f , l o c a lD i r e c t o ry , "/ghg") ;
21
22 return In teg ra t i onF lows . from (spec , pc −> pc . p o l l e r (pm −>
23 pm. f ixedRate (10 , TimeUnit .SECONDS)))
24 . handle ((f i l e , messageHeaders) −>
25 handleRemoteFile (f i l e , messageHeaders , f tpS f , "/ghg" ,
26 this . importF i l eDataServ i ce : : importEmiss ionScopes))
27 . get () ;
28 }

Listing 1: Set up of an IntegrationFlow bean polling an FTP running on localhost in an interval
of 10 seconds.

4.2.2 Data Extraction

We determine the appropriate import actions for new files in the IntegrationFlow’s handle
function (Listing 1 line 24 to line 26). The handleRemoteFile method defines the import actions
for files that arrive in the /ghg directory (line 25). Its parameters are:

• a copy of the new file cached on our local system

• file metadata in form of a MessageHeaders object

• a DefaultSftpSessionFactory object opening the SFTP session

• the arriving file’s remote directory name

• a reference to a consumer method extracting and processing the data (importEmission-
Scopes, line 26)

Our current approach is to consume files differently based on their location on the FTP server.
Thus, at the moment, the Tempscore solution employs multiple inbound adapters with different
consumer methods, one for each remote directory. Listing 1 only shows the inbound adapter

12

for the /ghg directory. Although more sophisticated solutions are possible, we found it to be
straightforward and efficient enough. Unfortunately, this method has some limitations: we must
define a fixed directory structure and additionally need to implement another inbound adapter
each time we add a new source.

In our implementation, the handler method calls the referenced consumer method. Each con-
sumer method is a file parser responsible for extracting and processing content. The consumer
method receives the copied file as a FileInputStream. We append the ending .bak after a file
has been processed, rendering it invisible for our handler method because it verifies the type of a
new file to be either .csv or .xlsx. This ensures a file is not processed a second time in the future.
Finally, the duplicated local file gets removed. Only the .bak version of the original file on the
FTP remains. Note that we have chosen the file ending .bak because it resembles the term backup.

The files on the FTP are currently divided into six separate directories as shown in Table 1.
This means that we have exactly six different types of source files and exactly six inbound
adapters. We periodically retrieve new files from the data providers and store them in their
designated folder. Files stored in the same folder are required to have the same structural layout
(e.g. identical headers in all .csv files) because otherwise the import logic may not extract
contents correctly. Unfortunately, the complexity of the data renders it exceptionally hard to
write a fully generic importer which is also maintainable. Note that under normal circumstances
the source files are not subject to change.

Directory Type Content Description

/ghg company data CO2 emissions in metric tons per company
/model environment data annual global emissions

/emissions environment data annual national emissions
/fxrates market data currency exchange rates and inflation

/tempchange environment data annual temperature anomaly
/instrument market data industry data/revenue/identifiers for instrument

Table 1: File system structure on the FTP server. Each directory holds exactly one type of files
which are periodically added by a data provider.

13

After data is extracted from a source file the import process converts it to a format compatible
with the structure of our relational database. We achieve this with the ObjectMapper of the
Jackson library that is able to convert a .csv file to a Java object. For .xlsx we use a company
internal library. Eventually we store Java objects derived from .csv files and .xlsx files in the
database with the help of the Spring Data JPA tool that provides the necessary ORM functionality.
Spring Data JPA features persistence entities and data repositories:

• Persistence entities are Java classes representing a table and are annotated with @Entity,
which tells Spring instances of the class are JPA entities that will be persisted to the
database. Persistence entities must have an @Id annotation symbolizing the primary key.

• The goal of data repositories, is to reduce boilerplate code by managing data access for a
certain persistence entity. It takes a persistence entity’s class and the type of its id attribute
as type arguments [2] which means there should exist a data repository for every persistence
entity. It is possible to predefine queries as well as pagination and sorting methods.

Spring registers a bean of each repository in the application context which makes it accessible
to use. Furthermore, Spring Data JPA also handles the database connectivity and allows us to
execute CRUD operations.

4.3 Temperature Score Calculation

Based on the gathered data we are able to assign a sustainability rating to imported instruments.
We have already discussed that the calculation alongside its input is distributed among multiple
processes in Section 3.1.2. This section clarifies how the partitioning logic of our application
works.

4.3.1 Partitioning

A cluster of calculation partitions carries out the same calculations for different blocks of instru-
ments at the same time. In Figure 4 we can see the BC conducts these parallel operations. A
managing instance called partition step within the BC is able to divide the data for the Temp-
score calculation into multiple batches. Each data batch gets deployed to a different calculation
partition (called calculation step) running in its own JVM. Every calculation step subsequently
runs a calculation processor using a python script to perform the indicator computation. The
python script implements the mathematical logic discussed in Section 2.4. The calculation pro-
cessor as well as the definition of the calculation step is provided as a standalone Java module
within the Tempscore project and will be explained in more detail in Section 4.3.3.

14

Figure 4: The procedure behind the step division begins with the partitioning logic in the BC,
where a partition (PART) step creates a calculation (CALC) step as its own Java process for
each data batch. The calculations themselves are performed within the standalone processes.

To fully understand the splitting operations in the BC we first need to know about some
basics of Spring Batch we use in our implementation shown in Figure 5. Spring Batch allows us
to define jobs consisting of one or more steps. A Job object schedules its assigned steps. It knows
when each step concludes and starts the next in line. We initially declare one job with a single
partition step. A Step object receives data as input and performs arbitrary tasks. The input
data of a step can be further subdivided into multiple input data batches by a Spring Batch
Partitioner. Afterwards, Spring Batch is able to attach each input data batch to a calculation
partition that will process the payload. Because the calculation partitions are realized as Spring
Batch steps we also refer to them as calculation steps (especially when discussing implementation
details).

15

We are now confronted with four questions:

1. How can we create a job?

2. How is the Spring Batch Partitioner able to split a step?

3. How do we pass usable data to a calculation step?

4. How can we execute a calculation step?

Figure 5: A job with one partition step uses a Partitioner to split the input data. The
Partitioner creates a calculation step for each chunk of input data.

In order to generate a job linked to one step we created two methods annotated with @Bean
as shown in Listing 2. The annotation tells Spring to execute both methods at startup and to
register the returned objects in the application context as described in Section 4.1.

1. The job method (line 2) creates the desired Job instance. The only parameter is the
partition step that should be assigned to the job. We use a JobBuilderFactory to configure
and build our Job object (line 3).

Each job must have a string identifier, set by the JobBuilderFactory’s get method. We
append the output of a random number generator to the job identifier to assure that the
job identifier is unique (line 4). Additionally, we have to link the partition step parameter
to our job (line 6). Finally, we create our job instance (line 7).

2. The partitionStep method (line 11) returns the partition step for our job. The partitionStep
method also takes one parameter being a PartitionHandler object. The PartitionHan-
dler defines the deployment configuration needed for starting the calculation steps and
will be evaluated further in Section 4.3.2. Similar to the job method we use a factory, in
this case a StepBuilderFactory, to instantiate our step (line 12).

16

A step also needs a unique identifier but due to the fact that Spring Batch identifies a
step not only by name but also by job affiliation and our jobs only consist of a single step,
each partition step is already unique. Hence, no random number generator is needed. We
simply label the step partitionStep (line 13).

Still, we need to split the work and the Partitioner is the key to the parallel calculation we
desire. The partitioner method takes a string and a reference to another method holding the
partitioning logic as parameters (line 15). The partitioning logic will be described in more
detail later. The string parameter represents the name prefix of the created calculation
steps. In addition, the Partitioner automatically appends a random number to each
name making them unique. At last, we set the partition handler (line 17) and instantiate
the partition step (line 19).

1 @Bean
2 public Job job (Step pa r t i t i onS t ep) {
3 return this . j obBui lderFactory
4 . get ("job" + new Random () . next Int (In t eg e r .MAX_VALUE))
5 /* link step to job */
6 . s t a r t (pa r t i t i onS t ep)
7 . bu i ld () ;
8 }
9

10 @Bean
11 public Step pa r t i t i onS t ep (Part i t i onHand le r pa r t i t i onHand l e r) {
12 return this . s t epBui lde rFactory
13 . get ("partitionStep")
14 /* register partitioner */
15 . p a r t i t i o n e r ("calculationStep" , p a r t i t i o n (/* ... */))
16 /* define tasks to perform in each calculation step */
17 . pa r t i t i onHand l e r (pa r t i t i onHand l e r)
18 /* ... */
19 . bu i ld () ;
20 }

Listing 2: Example of a job with one step, split by a Spring Batch Partitioner. The @Bean
annotation tells Spring to register a Job object and a Step object as beans in the application
context.

The Partitioner registers calculation steps with a String value as unique identifier and
splits the input data into multiple data batches. Moreover, the Partitioner sets each calcu-
lation step’s execution context (i.e. assigns a data batch to each calculation step). In Spring
Batch, the execution context is a map serving as a wrapper for a step’s payload.

In our solution we pass a reference to a partition method containing the partitioning logic
to the Partitioner. The partition method takes all the calculation input data, splits it into
partitions of fixed size based on a predefined batch size value, and derives one execution context
per input data batch. Further, the Partitioner creates a calculation step for each data batch
and links the calculation step to the corresponding execution context created by the partition
method. The calculation input data is a list of instruments mapped to their company data.

17

Thus, we have now clarified how the input is distributed between multiple calculation steps.
Nevertheless, we currently have not defined how to start these calculation steps. This is the task
of the PartitionHandler.

4.3.2 Partition Deployment

Remember, the partition step normally employs a PartitionHandler to define the necessary
deployment configuration to start the calculation steps as mentioned in Section 4.3.1. More
specifically, we use the DeployerPartitionHandler class inheriting from PartitionHandler to
control the execution of all calculation steps.

The DeployerPartitionHandler takes a resource as an argument, which can be an arbi-
trary .jar file. This is an immensely helpful Spring Batch feature, enabling us to initiate a
step defined in another Java program completely independent from the BC. Therefore, the Java
module containing the definition of the calculation step and the calculation logic itself can be
implemented as its own isolated microservice. Furthermore, the DeployerPartitionHandler
starts a Java process in a distinct JVM instance for each calculation step such that they can work
in parallel. Besides, when using the DeployerPartitionHandler we can also specify command
line arguments for the Java processes. In our current solution the BC utilizes this feature to pass
the connection string of the Tempscore DB to each starting calculation step. The DeployerPar-
titionHandler is even able to start a JVM inside a Docker container in the cloud.

Note that Spring Batch persists metadata, input data (i.e. execution contexts) and hierarchies
of all known jobs and steps as JSON to automatically generated tables in the Tempscore DB.
Entries can be identified by a unique String value that in the case of jobs and steps represents
their name. This is extremely favourable regarding our architecture. Both the BC and the
calculator instances have access to the same database. By that, information about steps can be
shared across multiple Java processes. A remote calculation step running on another JVM knows
its identifier thus being conveniently able to search for its workload (assigned by the Spring Batch
Partitioner) in the database on its own.

4.3.3 Calculation Processor

In the previous section we have learned how the workload is divided into multiple partitions and
how the calculation steps are started. Yet, we don’t know how to start the indicator calculation
itself. Listing 3 illustrates the calculation step launched for each input data batch.

Analogous to the partitionStep method (Listing 2) the calculationStep method creates a cal-
culation step bean (line 2). We also use a StepBuilderFactory to build our Step object (line 3).
In contrast to the partition step the calculation step is no subject to partition and processes items
directly. We pass instructions as a Tasklet bean (line 4). The Tasklet itself is an interface
for a callback method, which we can use to define the course of action and finally kick off our
indicator calculation.

We get our Tasklet bean from the pythonCalcTasklet method (line 10). The @StepScope
annotation allows the bean to directly access the current execution context. In combination with

18

the @Value annotation we are able to inject a value stored in the execution context with the
following syntax: "#{stepExecutionContext[’<value_name>’]}"

Hence, we are able to access the input data batch which was assigned to the calculation step
by the Partitioner as discussed in Section 4.3.1 (line 11 and line 12). Moreover, we inject the
unique partition number which identifies the calculation step for logging purposes (line 13 and
line 14). Remember that the Partitioner automatically appends a random number to each
calculation step name. This number is also stored in the execution context.

Finally, the callback function starts the calculation processor which creates a Java Process-
Builder capable of executing a python script with the calculationInput ArrayList stored in the
execution context as input (line 16 to line 23). The elements of the input ArrayList are JSON
strings. The python script then calculates the indicator and prints the results. Simultaneously,
the calculation processor reads in the printed data. Ultimately, the results are transmitted to
the Tempscore DB.

The ProcessBuilder in the calculation processor does not pass all of the input at once but
rather pages it. Smaller batches of a predefined size reduce the impact on the bulk of the data
when the python script fails as it only affects a single batch. However, choosing a chunk size too
small will increase execution time drastically, because continuously restarting the python process
produces an immense overhead. We currently pass 100 instruments at once to a single python
process.

1 @Bean
2 public Step ca l c u l a t i onS t ep () {
3 return this . s t epBui lde rFactory . get ("calculationStep")
4 . t a s k l e t (pythonCalcTasklet (null , null))
5 . bu i ld () ;
6 }
7
8 @Bean
9 @StepScope

10 public Tasklet pythonCalcTasklet (
11 final @Value ("#{ stepExecutionContext[’partitionNumber ’]}")
12 In t eg e r partit ionNumber ,
13 final @Value ("#{ stepExecutionContext[’calculationInput ’]}")
14 ArrayList<Str ing> ca l cu l a t i on Inpu t) {
15
16 return (/* ... */) −> {
17 /* call process builder with
18 calculationInput array as input */
19
20 /* read in printed data */
21
22 /* store results in database */
23 } ;
24 }

Listing 3: The calculation step directly performs the indicator computations in a Tasklet.

19

4.3.4 Indicator Computation

We distinguish between two calculation types based on the amount of data we are able to acquire
for a certain company:

Standard Case The standard indicator is the potential global warming in degrees Celcius up
to a target year as explained in Section 2.4. Under normal circumstances, we have gathered
enough data about a company to supply the calculation processor with the necessary input. At
first, we calculate the company’s emissions to revenue ratio over the last two years and assume
this change is a stable trend. Based on the trend we can now approximate the absolute emissions
up to a target year. We then apply the absolute emissions to another model representing the
temperature increase per gigaton (GT) CO2. [1]

Surrogate Case In contrast to the standard method, the surrogate method is applied if the
calculation for an instrument has insufficient input data. Sometimes a data provider is not
able to deliver information in the desired quality. This is especially the case for the sparsely
available environment data that is sometimes completely missing at all. For this reason we use
similar companies operating in the same industry sector to estimate the ecological footprint of an
otherwise uncertain instrument. In general the surrogate method consists of multiple successive
steps:

1. After the application finalizes the standard calculation it tags all instruments which are
still not rated yet.

2. The BC then initiates the follow up surrogate calculation that maps a tagged instrument
to a list of companies operating within the same sector.

3. The ten closest companies, in terms of a normalized Euclidean distance with respect to the
reported emission data, are chosen as surrogate candidates.

4. Afterwards, the surrogate candidates are ranked by their Tempscore indicator and the best
as well as the worst are removed from the candidate list to omit outliers.

5. Finally, we return the average of the remainders’ indicators as warming potential for the
unrated instrument.

4.4 Result Export

This section briefly summarizes how the indicator export to the GS is implemented. At the
core of this component lies the Spring Web library supporting us with everything we need to
implement a RESTful web service in Java.

After the calculation has come to an end, the BC posts the results to a RESTful API endpoint
residing in the GS. The GS operates unaccompanied from the rest of the program and is used
to store and provide different indicators. As mentioned in Section 3.1.3 it even uses its own
database. Spring Web supports us with the mandatory features we need to implement the REST-
ful service. Currently there exists only one endpoint which takes Tempscore results as input

20

and another one providing these results to external applications.

In Listing 4 we can see the endpoint used to access all Tempscore indicators. In line 1 we
define the TempscoreController class as a Spring Web RestController that holds various end-
points. Through the @RequestMapping annotation in line 2, we are able to define a base path
serving as a prefix for all endpoint URLs in this RestController. Spring Web gives us the
possibility to use every major HTTP method with the correct annotation. An example of this can
be seen in line 6. The endpoint annotated with @GetMapping returns all Tempscore indicators.

1 @RestContro l ler
2 @RequestMapping ("/api/v1/tempscore")
3 public class TempscoreControl ler {
4 . . .
5
6 @GetMapping ("/all")
7 public ResponseEntity <... > getTempscore Ind icators () {
8 . . .
9 }

10 }

Listing 4: Implementation of a Spring Web REST controller with a GET endpoint. The endpoint
can be reached at the URL <hostname>/api/v1/tempscore/all.

21

5 Evaluation

In this section we assess quality factors such as performance or vulnerability against faulty data.
We also try to find the moment from where on our approach outperforms a sequential method.

5.1 Performance Test

We designed the system to use the advantages of parallel execution providing high performance
with a large amount of data. However, this does not come without an administration overhead.
We have learned in Section 4.3.1 that each calculation step is attached to a different process,
which consumes a substantial amount of time at startup. We will now compare execution time
of a partitioned job to a singular step instance with different quantities of input data.

Our measurements rely on the built-in logging of Spring Batch that stores the execution time
of each step to an automatically generated database table. For the absolute CPU time we add up
three factors:

1. The duration between the calculation trigger and the start of the last partition.

2. The accumulated value of each partition’s execution time.

3. The time span from the moment the fastest partition finishes until the partition step
terminates.

Table 2 shows that splitting up the calculation is indeed much faster. Positive effects even apply
to a relatively small input size of 1000 instruments. Nevertheless, the expected overhead leads to
increased overall CPU usage visualized in the last column. The absolute CPU time consumption is
increasing steadily alongside the number of partitions in use. Furthermore, we can observe the
partitioning for 1000 instruments is becoming impracticable for a factor greater than eight. All
of the findings also apply to 5000 input instruments. Despite, we should not forget to mention
the growth of the time span between a computation of four and eight partitions is significantly
slower for the larger data sample. This hints that a large number of partitions is only reasonable
for a large quantity of data.

5.2 Robustness

To test the affect of faulty data on the application we intentionally pass nonsensical data as input
and analyze the outcome. The input data itself is transmitted to a python script in the calcula-
tion processor in batches of fixed size as mentioned in Section 4.3.3. If the script encounters an
input it can not process it will fail. But due to the data division a failure will only affect a single
batch.

Even a far more serious exception on partition level does not lead to an unsuccessful termina-
tion of the whole application. This is because the partitions act independently from one another.
Only a fraction of the indicators will be lost. Spring Batch further persists each partition’s status
which allows an exception handler to restart failed calculation steps.

23

instruments # partitions real time CPU time

1000 1 2m 4s 211ms 2m 4s 211ms
1000 2 1m 21s 821ms 2m 13s 301ms
1000 4 1m 9s 410ms 2m 33s 692ms
1000 8 2m 3s 424ms 6m 52s 600ms

5000 1 8m 7s 595ms 8m 7s 595ms
5000 2 5m 7s 133ms 9m 32s 535ms
5000 4 2m 59s 570ms 10m 9s 481ms
5000 8 3m 29s 353ms 19m 53s 221ms

Table 2: Real time next to the absolute CPU time the system needed to calculate the Tempscore
indicators for different sizes of input based on the degree of workload division. The tests were
conducted on a Dell Inspiron XPS 15 9560 containing an Intel Core i7-7700HQ 2.80GHz quad
core CPU with 32GB RAM on Windows 10.

6 Current Limitations and Future Work

Although the Tempscore application itself has been finalized we still have tasks in the backlog.
The system can be improved in several ways that are currently too time extensive or not necessary.
Furthermore, we will discuss possible uses of the Tempscore indicator within the uni software
plus GmbH.

6.1 Cloud Integration

One requirement is to lift the application into the Google Cloud. The cloud deployment currently
has the highest priority in the backlog and we are looking forward to conclude this task in the
near future. With the help of the Spring Cloud Task library we are able to bring our Spring
Batch partitioning logic to the cloud.

Remember, the DeployerPartitionHandler described in Section 4.3.1 is able to start an
arbitrary Java executable. With Spring Cloud Task it is also feasible to define a container
holding a .jar as the deploy-able resource. In our case we build a Docker container around the
calculation processor and provide it within the Kubernetes cluster. Each partition will be started
as a separate instance of a pod. A pod in the context of Kubernetes represents the smallest unit
that can be created, managed, and most importantly for us, scaled.

6.2 Further Improvements

This section explains what aspects of our program will be improved or are possible candidates
for a rework.

File Watcher In Section 4.2.2 we discussed the drawbacks of our file watcher implementation.
Although we need to configure another inbound adapter for each new data source, our method
has proven to be sufficient. But this may be not the case anymore if we need to extensively
extend the number of data sources. Therefore we could be required to perform refactorings in
the future.

Partition Preprocessing Currently all of the input is gathered at once before the calculation
is partitioned, which takes a significant amount of time. To further reduce the duration calcula-
tion partitions could try to query for necessary data themselves. A possible solution would be to
not pass the entirety of the input but just the identifiers of the instruments each partition needs.
All the heavy lifting such as joins would therefore happen in parallel within calculation processor
instances. This would also reduce the amount of data transferred between the partition step and
his calculation steps. However, the database utilization would increase significantly.

6.3 Areas of Application

The Tempscore indicator will be available as a standalone product. However, it is designed
to serve as a complementary feature to enhance established finance software developed by uni
software plus GmbH. Targeted customers are regional financial institutes. Some of them even

25

possess banking software that do, in fact, consider sustainability as an investment factor. Yet,
these ratings are mostly kept simple.

26

7 Conclusion

In this thesis, we introduced a system capable of processing large amounts of market data, com-
pany data and environment data and merges them to a meaningful sustainability rating for
individual companies. At first we had an in depth look at our micro service architecture and
analyzed each component alongside its communication paths in detail. We mentioned the data
has to traverse three main processes leading us to our final indicator, being import, calculation,
and export. Particularly, the importer using the file watcher in combination with the file parser
and the FTP server is a good example for the collaboration of multiple components within the
Tempscore application.

Afterwards, we discussed how the split into multiple calculation partition works on a source
code level and dived deeper into the functionalities provided by the Java Spring Framework. Due
to our efforts to commence calculations in parallel we achieved a more than reasonable execu-
tion time. Besides the software engineering aspect we also obtained some insights into the basic
mathematics, that can be considered as the centerpiece of the indicator computation itself.

Aside from being a software project, the Tempscore solution is a chance. A chance for
private and corporate customers to respect our precious blue planet by devoting capital to more
sustainable investments.

27

List of Tables

1 File system structure on the FTP server. Each directory holds exactly one type of
files which are periodically added by a data provider. 13

2 Real time next to the absolute CPU time the system needed to calculate the
Tempscore indicators for different sizes of input based on the degree of workload
division. The tests were conducted on a Dell Inspiron XPS 15 9560 containing
an Intel Core i7-7700HQ 2.80GHz quad core CPU with 32GB RAM on Windows 10. 24

List of Figures

1 Overview of the Tempscore system. The arrows show possible directions of the
data flow between individual components. The dashed lines roughly split the
system into three groups of components. Each group is utilized by one of the
three main processes described in Section 3.1 (i.e., importer, calculator, exporter). 4

2 Visualization of the data pipeline within the Tempscore application. The num-
bering shows the successive steps in between the raw input data and the final
indicator. The direction of the arrows resembles the direction of the data flow. . 8

3 Most crucial modules for data import and indicator calculation. The dashed con-
nectors imply where each functional program element is situated. 10

4 The procedure behind the step division begins with the partitioning logic in the
BC, where a partition (PART) step creates a calculation (CALC) step as its
own Java process for each data batch. The calculations themselves are performed
within the standalone processes. 15

5 A job with one partition step uses a Partitioner to split the input data. The
Partitioner creates a calculation step for each chunk of input data. 16

Listings

1 Set up of an IntegrationFlow bean polling an FTP running on localhost in an
interval of 10 seconds. 12

2 Example of a job with one step, split by a Spring Batch Partitioner. The @Bean
annotation tells Spring to register a Job object and a Step object as beans in the
application context. 17

3 The calculation step directly performs the indicator computations in a Tasklet. 19
4 Implementation of a Spring Web REST controller with a GET endpoint. The end-

point can be reached at the URL <hostname>/api/v1/tempscore/all. 21

List of Acronyms

BC batch controller

FTP file transfer protocol

DTO data transfer object

28

GS gateway service

GUI graphical user interface

ORM object relational mapping

JPA java persitance API

CRUD create;read;update;delete

API application programming interface

REST representational state transfer

29

References

[1] M. Panholzer, M. Aichinger, and M. Aeberhard. In A transparent climate rating based on the
warming potential, pages 1–11, 2022. [unpublished].

[2] I. Pivotal. Spring framework documentation. https://docs.spring.io/
spring-framework/docs/current/reference/html/, 2022. [Online; accessed 27-August-
2022].

[3] H.-O. Pörtner, D. Roberts, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig,
S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama. In Climate Change 2022:
Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth As-
sessment Report of the Intergovernmental Panel on Climate Change, pages 1–33. Cambridge
University Press. In Press., 2022.

30

https://docs.spring.io/spring-framework/docs/current/reference/html/
https://docs.spring.io/spring-framework/docs/current/reference/html/

	Abstract
	Kurzfassung
	Introduction
	Background
	Sustainable Investment
	Integration into Existing Products
	Terminology
	Indicator

	Architecture
	General Design
	Importer
	Calculator
	Exporter

	Lifecycle
	Trigger
	Data Pipeline

	Implementation
	Technologies
	Data Import
	File Detection
	Data Extraction

	Temperature Score Calculation
	Partitioning
	Partition Deployment
	Calculation Processor
	Indicator Computation

	Result Export

	Evaluation
	Performance Test
	Robustness

	Current Limitations and Future Work
	Cloud Integration
	Further Improvements
	Areas of Application

	Conclusion
	Literature

