
Submitted by
Dominik Mascherbauer

Submitted at
Institute for System Software

Supervisor
Prof. Dr. Dr. h.c. Hanspeter
Mössenböck

Co-Supervisor
Dr. Christian Wirth
Dipl.-Ing. Paul Wögerer

Oktober 2023

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Using Virtualization for
Building Images from
Native Image Bundles
for Deterministic Repro-
ducibility

Bachelor Thesis

to obtain the academic degree of

Bachelor of Science

in the Bachelor’s Program

Informatik

II

Abstract

GraalVM Native Image is a tool for the ahead-of-time compilation of Java applications,
tailored for specific target systems. This approach operates under a closed-world assump-
tion, yielding a native executable. The native executable also contains an Initial Image
Heap consisting of objects created during the image build that are reachable from appli-
cation code, java.lang.Class objects of classes used in the native image and object
constants embedded in method code. The Initial Image Heap facilitates a significantly
faster startup time compared to running an application on JVM by copying the contents
of the Initial Image Heap from the binary. To ensure the deterministic reproduction of
this binary, we employ the concept of Native Image Bundles. Native Image Bundles are
archives encapsulating all requisite components, including Java class files and environment
variables.

However, the build time computations happening as a part of the Native Image Build
allow access to the host system and network of the host system we are building on.
Although uncommon, the potential for unwanted external influences necessitates more
stringent controls. To address this concern, we introduce a virtualization-based approach.
This entails the creation of a secure container environment wherein explicitly specified
resources and the running Native Image Builder are encapsulated. The native image
is then constructed within this controlled virtualized environment, safeguarded against
interference from external resources. If the build requires additional, not explicitly defined
inputs, it will fail.

Native Image Bundles are architecturally similar to Java JAR files, encompassing all
class files and application resources. An extension to this bundle paradigm introduces
the convenience of executing the enclosed Java application on JVM instead of building a
native image first. We introduce a bundle launcher specified as the primary entry point
within the bundle. When executed, this launcher dynamically configures an executable
environment from the bundle’s contents, facilitating straightforward execution of the
bundled application. Furthermore, we offer the flexibility of executing the application
within a container or attaching the Native Image agent. The Native Image agent is a Java
agent for capturing usages of dynamic aspects of Java application executions that need to
be specified for building a native executable.

In summary, GraalVM Native Image Bundles introduces a systematic approach to
reproduce a native executable under the same conditions and with the same inputs active
during bundle creation. This thesis addresses the imperative requirements of determinism,
resource isolation, and direct execution, underpinned by the bundle and virtualization
features.

III

Kurzfassung

GraalVM Native Image ist ein Werkzeug für die Ahead-of-Time-Kompilierung von Java-
Anwendungen für spezifische Ziel-Systeme. Dieser Ansatz beruht auf der Annahme eines
geschlossenen Systems und erzeugt eine nativ ausführbare Datei. Die native ausführbare
Datei enthält auch einen so gennanten Initial Image Heap, der aus Objekten besteht, die
während der Native Image Erzeugung erstellt wurden und die von Anwendungscode erreich-
bar sind, java.lang.Class-Objekten von Klassen, die in der nativ ausführbaren Datei
verwendet werden, und in Methodencode eingebetteten Objektkonstanten. Der Initial
Image Heap ermöglicht einen erheblich schnelleren Start im Vergleich zur Ausführung einer
Anwendung auf der JVM durch das Kopieren des Inhalts des Initial Image Heap aus der
Binärdatei. Um die deterministische Reproduzierbarkeit dieser Binärdatei sicherzustellen,
verwenden wir das Konzept der Native Image Bundles, Archive die alle erforderlichen
Komponenten einschließlich Java-Klassendateien und Umgebungsvariablen umfassen.

Während dem Build-Prozess einer nativ ausführbaren Datei behält Native Image jedoch
Zugriff auf das gesamte Dateisystem und Netzwerkressourcen. Obwohl unwahrscheinlich,
besteht die Möglichkeit unerwünschter externer Einflüsse, die strengere Einschränkungen
erfordern. Um dem gerecht zu werden, führen wir einen virtualisierungsbasierten Ansatz
ein. Dies beinhaltet die Erstellung einer sicheren virtuellen Umgebung, in der explizit
angegebene Ressourcen und die ausgeführte GraalVM eingekapselt sind. Eine nativ
ausführbare Datei wird dann in dieser kontrollierten virtualisierten Umgebung erstellt
und vor dem Einfluss externer Ressourcen geschützt. Würden zusätzliche, nicht explizit
definiert Dateien für den Build benötigt werden, dann würde dieser fehlschlagen.

Native Image Bundles ähneln Java JAR-Dateien und umfassen alle Klassendateien
und Ressourcen einer Anwendung. Eine Erweiterung dieses Bundle-Paradigmas führt
die Möglichkeit ein, die eingekapselte Anwendung direkt auf eine JVM auszuführen ohne
vorher eine native ausführbare Datei dafür zu erzeugen. Wir führen einen Bundle-Launcher
ein, der als primärer Einstiegspunkt eines Bundles spezifiziert ist. Wenn dieser Launcher
ausgeführt wird, konfiguriert er eine virtuelle Umgebung mit den Inhalten des Bundles und
ermöglicht eine unkomplizierte Ausführung der Anwendung. Darüber hinaus bieten wir
die Flexibilität, die Anwendung innerhalb eines Containers auszuführen oder den Native
Image Agent anzuhängen. Der Native Image Agent ist ein Java-Agent zur Erfassung der
Verwendungen dynamischer Aspekte währen der ausführung von Java Anwendungen, die
für den Aufbau einer nativen ausführbaren Datei angegeben werden müssen.

Zusammenfassend bietet GraalVM Native Image Bundles einen systematischen Ansatz
zur Reproduktion einer nativen ausführbaren Datei unter denselben Bedingungen und
mit denselben Eingaben als während der Bundle Erstellung. Diese Arbeit behandelt
die Anforderungen an Determinismus, Ressourcenisolierung und direkte Ausführung,
unterstützt durch Bundles und Virtualisierungswerkzeuge.

IV

V

Contents

1 Introduction 1

2 Background 3
2.1 GraalVM . 3

2.1.1 Native Image . 3
2.1.2 Native Image Build . 4
2.1.3 Native Image Bundles . 7
2.1.4 Native Image Agent . 9
2.1.5 GraalVM Container Images . 9

2.2 Virtualization Tools . 13
2.3 JAR File Specification . 15
2.4 Problem Statement . 15

3 Implementation 17
3.1 Native Image Bundles Extensions . 17
3.2 Virtualized Native Image Build . 18

3.2.1 Parse Extended Native Image Bundles Options 19
3.2.2 Check for Virtualization Tool . 20
3.2.3 Build Container Image . 21
3.2.4 Run Container for Native Image Build 22

3.3 Capture Virtualization Related Information 24
3.3.1 Virtualization Tool . 24
3.3.2 Dockerfile . 24

3.4 Bundle Launcher . 26
3.4.1 Bundle Launcher Package . 26
3.4.2 Inject Bundle Launcher into Native Image Bundles 28
3.4.3 Execute Native Image Bundles . 29

4 Limitations 31
4.1 Virtualization Tool . 31
4.2 Operating System . 32

5 Usage and Evaluation 33
5.1 Virtualized Image Build . 33

5.1.1 Command-Line Interface . 34
5.1.2 Updating Virtualization Information in Native Image Bundles . . 35

5.2 Execute Native Image Bundles . 35
5.2.1 Command-Line Interface . 36
5.2.2 Attach Native Image Agent . 36

VI CONTENTS

5.2.3 Virtualized Bundle Execution . 37
5.2.4 Other Options . 38

5.3 Backward Compatibility . 39
5.4 Evaluation . 39

6 Conclusion 41

1

Chapter 1

Introduction

Nowadays, most Java applications are not self-contained and use various libraries, config-
uration files, and often depend on specific environment variables. This results in multiple
files required to run an application, which have to be managed such that we always have
the correct version for each dependency. However, versions might change over time, or
some dependencies are no longer available that were available during the initial build and
deployment of an application. Therefore, the behavior of an application might change
even though the application itself remains the same. This is non-deterministic behavior
at application build time, which we want to avoid. One measure is to build a compiled
executable with GraalVM Native Image that combines the application with all its depen-
dencies, such that it is executable at any time in the same way without worrying about
version updates or unavailability of dependencies. However, if we want to make changes to
the executable such as hotfixes, security updates in the Native Image Builder, or changing
the target architecture, we would need to recompile the executable and end up with the
same non-deterministic problem as before.

How to guarantee that we can rebuild a native image at a later point in time, such
that we have the same inputs as in the initial build? Native Image Bundles, a feature
for GraalVM Native Image, introduces so-called bundles, archives containing all inputs
required by the Native Image Builder to build a native image. Each bundle contains a
META-INF directory, conforming to the JAR file format. Furthermore, bundles enable
remote building of bundles without a dedicated build server, as we have the application
and all dependencies in one file, which is easier to manage. However, we still end up with
one key issue if we create this bundle on a regular host system. We can not ensure, that
there were no external files accessed from the host’s file system or even from the network
in the background, which did not end up in the bundle. However, this could eventually
cause the build of an executable to fail, if something we were not aware of at bundle
creation time is not available any longer. We want to provide a solution that all inputs
used for the initial build will be used again in subsequent builds from a bundle. Therefore,
we create a temporary system with a controlled environment, which we are set up to have
full control over what can and can not be accessed during bundle creation. However, we
now have to persist the controlled environment or at least a deterministically executable
blueprint of it, such that we can enforce the same environment at a later point in time.

Since Native Image Bundles encapsulate all inputs required to build a native image
for a given application, they are also a natural fit for executing the bundled application
directly on JVM instead of using it as input for the Native Image Builder. Therefore, with
some modifications in the bundle creation process, we can inject resources that enable

2

us to run the bundled application on the Java HotSpot VM. Much like a Java JAR file,
which is quite similar to a bundle containing an application with its dependencies, can be
invoked to execute a stand-alone application. Building up on that, a bundled application
may also make use of some external files through the host system’s file system or network,
which again might not be available at a later point in time or on a different system. Again,
a controlled environment that can be tweaked in a way to create a deterministic execution
of a bundled application can help us out as well.

3

Chapter 2

Background

In this chapter, we introduce the tools and artifacts used throughout the thesis. First,
Section 2.1 describes GraalVM and its features, including Native Image and Native Image
Bundles. Then, in Section 2.2, we will explain virtualization tools and their usage. Finally,
in Section 2.3, we will give a brief description of the JAR file specification, which is the
archive format used for Native Image Bundles.

2.1 GraalVM

GraalVM [6] is a high-performance Java Virtual Machine (JVM) [14], based on OpenJDK
HotSpot [23]. Furthermore, it provides several improvements and additional features:

1. Advanced just-in-time (JIT) compiler: For better optimized Java applications

2. GraalVM Truffle [31]: A language implementation framework, which enables running
other languages such as JavaScript, Python, Ruby, and more (see Figure 2.1). With
Truffle, Java, and other supported languages can also interoperate with each other,
allowing to mix multiple programming languages in one application.

3. Native Image [19] tool: A tool to ahead-of-time (AOT) compile Java applications
into native executables, which are also called native images. A further extension of
Native Image is the Native Image Bundles [21] feature, which offers a simple way to
archive all required dependencies for building an application into a native image.

In this thesis, the main focus lies on the Native Image Bundles feature.

2.1.1 Native Image

A native image is a stand-alone executable that contains AOT-compiled Java code. It
includes compiled code from files necessary to run an application, which are application
classes, classes from dependencies, runtime library classes, and statically linked native
code from JDK. However, a native image does not run on a JVM but contains native code
that can directly be executed on the target architecture. All relevant parts from the JVM,
such as memory monitoring, thread scheduling, and more are provided in native code by
a purpose-built runtime system, called Substrate VM [29]. Compared to executing an
application on a JVM, a native image has a significantly faster startup time and lower
runtime memory overhead.

4 2.1. GRAALVM

Figure 2.1: GraalVM Architecture [7]

To build a native image, we make use of the Native Image Builder. The builder
processes all classes that form a native image, including application classes, classes from
dependencies, runtime library classes, and statically linked code from the JDK. All
classes are statically analyzed to determine methods and fields that are reachable during
application execution, and AOT compiles them into a standalone executable. However,
compared to running the application on JVM on any system, a native image is built for
a specific operating system and architecture, hence it will only run on systems with the
architecture it was created for. This process is called a Native Image Build.

2.1.2 Native Image Build

To build a native image, we first need to add the Native Image tool to GraalVM1.
Therefore, we make use of the GraalVM Updater [11] tool as seen in Listing 2.1. This
is required to make the Native Image tool available in the GraalVM bin directory
$GRAALVM HOME/bin.

1 $ gu install native-image

Listing 2.1: Install the Native Image tool with the GraalVM Updater tool

After the Native Image tool is installed, we can use it as a command-line tool to create
native images of applications. To build a native image, we need to specify the classpath
and/or module path of an application, as well as provide the name of the main class,
a JAR file that specifies the main class in its manifest, or a module with a main class.
Whatever way was chosen, the resulting native image will have the same behavior as
executing the main class on JVM. Furthermore, we can specify the name of the resulting
executable as well as pass some more arguments to the Native Image tool. Commonly
used ones are listed and explained in the help text of the Native Image tool2 (see Listing
2.2). To print the help text, we can use the --help option. The most important options
for this bachelor’s thesis, however, are --bundle-create and --bundle-apply. These options
are explained in the extra help text, shown in Listing 2.3, which is accessible with the
command-line option --help-extra.

1Using GraalVM 22.X [22]
2A complete list of options can be found in the GraalVM documentation [20]

CHAPTER 2. BACKGROUND 5

1 GraalVM Native Image (https://www.graalvm.org/native-image/)
2
3 This tool can ahead-of-time compile Java code to native executables.
4
5 Usage: native-image [options] class [imagename] [options]
6 (to build an image for a class)
7 or native-image [options] -jar jarfile [imagename] [options]
8 (to build an image for a jar file)
9 or native-image [options] -m <module>[/<mainclass>] [options]

10 native-image [options] --module <module>[/<mainclass>] [options]
11 (to build an image for a module)
12
13 where options include:
14
15 @argument files one or more argument files containing options
16 -cp <class search path of directories and zip/jar files>
17 -classpath <class search path of directories and zip/jar files>
18 --class-path <class search path of directories and zip/jar files>
19 A %pathsep% separated list of directories, JAR

archives,
20 and ZIP archives to search for class files.
21 -p <module path>
22 --module-path <module path>...
23 A %pathsep% separated list of directories, each

directory
24 is a directory of modules.
25 --add-modules <module name>[,<module name>...]
26 root modules to resolve in addition to the

initial module.
27 <module name> can also be ALL-DEFAULT, ALL-SYSTEM

,
28 ALL-MODULE-PATH.
29 -D<name>=<value> set a system property
30 -J<flag> pass <flag> directly to the JVM running the image

generator
31 --diagnostics-mode enable diagnostics output: class initialization,

substitutions, etc.
32 --enable-preview allow classes to depend on preview features of

this release
33 --enable-native-access <module name>[,<module name>...]
34 modules that are permitted to perform restricted

native operations.
35 <module name> can also be ALL-UNNAMED.
36 --verbose enable verbose output
37 --version print product version and exit
38 --help print this help message
39 --help-extra print help on non-standard options

Listing 2.2: Native Image tool help text

1 Non-standard options help:
2
3 --exclude-config exclude configuration for a comma-separated pair of

classpath/modulepath pattern and resource pattern. For example: ’--
exclude-config foo.jar,META-INF\/native-image\/.*.properties’ ignores
all .properties files in ’META-INF/native-image’ in all JARs named ’foo.
jar’.

4 --expert-options lists image build options for experts

6 2.1. GRAALVM

5 --expert-options-all lists all image build options for experts (use at
your own risk). Options marked with [Extra help available] contain help
that can be shown with --expert-options-detail

6 --expert-options-detail
7 displays all available help for a comma-separated

list of option names. Pass * to show extra help
for all options that contain it.

8
9 --configurations-path <search path of option-configuration directories>

10 A %pathsep% separated list of directories to be
treated as option-configuration directories.

11 --debug-attach[=<port or host:port (* can be used as host meaning bind to
all interfaces)>]

12 attach to debugger during image building (default
port is 8000)

13 --diagnostics-mode Enables logging of image-build information to a
diagnostics folder.

14 --dry-run output the command line that would be used for
building

15
16 --bundle-create[=new-bundle.nib]
17 in addition to image building, create a Native Image

bundle file (*.nib file) that allows rebuilding of
that image again at a later point. If a bundle-
file gets passed, the bundle will be created with
the given name. Otherwise, the bundle-file name is
derived from the image name. Note both bundle
options can be combined with --dry-run to only
perform the bundle operations without any actual
image building.

18 --bundle-apply=some-bundle.nib
19 an image will be built from the given bundle file

with the exact same arguments and files that have
been passed to native-image originally to create
the bundle. Note that if an extra --bundle-create
gets passed after --bundle-apply, a new bundle
will be written based on the given bundle args
plus any additional arguments that haven been
passed afterwards. For example:

20 > native-image --bundle-apply=app.nib --bundle-create
=app_dbg.nib -g creates a new bundle app_dbg.nib
based on the given app.nib bundle. Both bundles
are the same except the new one also uses the -g
option.

21
22 -E<env-var-key>[=<env-var-value>]
23 allow native-image to access the given environment

variable during image build. If the optional <env-
var-value> is not given, the value of the
environment variable will be taken from the
environment

24 native-image was invoked from.
25
26 -V<key>=<value> provide values for placeholders in native-image.

properties files

Listing 2.3: Native Image tool extra help text

CHAPTER 2. BACKGROUND 7

Furthermore, we can also use the Native Image Builder to build a native shared library.
In this case, the native image itself is not directly executable on JVM, but it provides
callable entry points. A shared library can be built with a given main class or a JAR file,
similar to an executable native image. The shared library will have the main method
of the main class as its entry point. However, shared libraries can also be built without
specifying a main class. Nevertheless, a shared library needs at least one entry point to
be useful, but it also can have multiple entry points. Therefore, entry points can also be
defined manually by annotating methods with @CEntryPoint.

2.1.3 Native Image Bundles

With the Native Image tool, we can also create a so-called native image bundle. A bundle
is an archive, that contains all inputs to successfully reproduce the native image at a
later point in time, without relying on the availability of the same environment and
dependencies. Therefore, it contains all application class files including class files from all
its dependencies, which are required for building a native image or native shared library.
All files are archived into one *.nib file, which is a form of a JAR file with a manifest file
and a fixed internal structure.

To create a specific native image bundle, we have to pass the --bundle-create option to
a Native Image tool command line. This builds a native image and additionally creates the
corresponding *.nib file. This bundle then contains all class files including dependencies,
some configuration files, and the native image itself. We can then use the bundle file with
the command-line option --bundle-apply to rebuild the same native image at a later point
in time for any architecture.

Figure 2.2 shows the format of a bundle file. It has a specific structure of its internal
directories that contain class files, other JAR files, some configuration files, the built
native image, and the manifest:

• nibundle.properties: Contains the bundle version info with bundle format version,
platform, and architecture and GraalVM and Native Image version used for bundle
creation.

• input/auxiliary: Contains auxiliary files that are passed to the Native Image
Builder via arguments, such as external JSON [15] files.

• input/classes: Contains all classpath and module path entries passed to the builder.
Classpath in cp and module path in p.

• build.json: Full command line for the Native Image tool without --bundle-create
and --bundle-create.

• environment.json: Key-Value pair of environment variable names and values used
for building the native image, that were specified with the -E option.

• path canonicalizations.json: Records path canonicalizations during bundle cre-
ation for the input files. Contains mappings from relative paths to their absolute
counterparts.

• path substitutions.json: Records path substitutions during bundle creation for
the input files. Contains mappings from absolute paths of the host system to internal
paths of the native image bundle.

8 2.1. GRAALVM

bundle-file.nib

META-INF

MANIFEST.MF

nibundle.properties

input

auxiliary

classes

cp

p

stage

build.json

environment.json

path canonicalizations.json

path substitutions.json

output

default

myimage

myimage.debug

sources

other

Figure 2.2: Native Image Bundles file format [21]

CHAPTER 2. BACKGROUND 9

• output/default: Contains all output files that end up on the default output path
(specified with the -H:Path option) such as the created native image, its debug info,
and the debug sources.

• output/other: Contains all output files from the Native Image Builder that would
have been written to arbitrary paths if no bundle was created.

However, if we add the option --dry-run, building the native image is skipped. Therefore,
we end up with just the bundle file which also does not contain the native image, as it
never got built. In this case, the output directory is omitted, as the Native Image tool
with the --dry-run option enabled does not produce any image build output.

2.1.4 Native Image Agent

The Native Image Agent [30] is a JVM Tool Interface (JVMTI) [16] agent that tracks the
usage of dynamic features of an execution on a regular JVM. It covers usages of the Java
Native Interface (JNI), Java Reflection, Dynamic Proxy objects, and Java resource access
[1]. As native images are AOT compiled and rely on the static analysis of the reachable
code, the Native Image tool might not be able to predict all the usages of dynamic features.
However, we can configure the use of dynamic features with configuration files, which can
also be created by the Native Image agent.

The Native Image agent is enabled by providing -agentlib if the used JVM is a GraalVM
with the Native Image agent installed or -agentpath with the path to the Native Image
agent on any JVM that supports JVMTI. During the execution of the application, the
Native Image agent intercepts dynamic calls and stores the information in the configuration
files:

• jni-config.json

• reflect-config.json

• proxy-config.json

• resource-config.json

To provide those configuration files to the Native Image tool, we place them in a
META-INF/native-image/.../ directory on the classpath or module path. If Native
Image finds any of the configuration files in such directories or their subdirectories, the
configuration files are automatically included in a Native Image Build.

2.1.5 GraalVM Container Images

A GraalVM container image is a container image (see Section 2.2) with GraalVM set up in
it. There are multiple GraalVM container images provided depending on the architecture,
Java version, and the set of GraalVM features. Each of the container images comes
with either Oracle Linux 7, 8, or 9 as their Linux distribution. Furthermore, each of the
container images is currently provided with Java 17 and Java 20 and for the architectures
amd64 and arm64. There are different images based on the feature set as described in
Table 2.1.

All the container images are published to the GitHub Container Registry [9] and can
be pulled from there. However, for this bachelor thesis, the native-image-community

10 2.1. GRAALVM

Package Description

jdk-community A size compact GraalVM Community Edition container
image with the GraalVM JDK pre-installed.

graalvm-community A GraalVM Community Edition container image with
the gu utility [11] to install additional features.

native-image-community A size compact GraalVM Community Edition container
image with the Native Image support.

truffleruby-community A size compact GraalVM Community Edition container
image with the Ruby runtime. It uses a standalone build
of TruffleRuby.

nodejs-community A size compact GraalVM Community Edition container
image with the Node.js runtime.

graalpy-community A size compact GraalVM Community Edition container
image with the GraalPy runtime.

Table 2.1: Available GraalVM container images [9]

container images are the most important ones and have the Native Image tool installed.
Listing 2.4 depicts how a native-image-community container is pulled from the registry
using Docker. This container image contains an installation of GraalVM with the Native
Image tool available.

1 $ docker pull ghcr.io/graalvm/native-image-community:20

Listing 2.4: Pull a native-image-community container image [8]

Furthermore, all the Dockerfiles used for creating the container images are published
in a GitHub repository [10]. For native-image-community, there are two different types
of Dockerfiles available. First, one that just contains GraalVM with the Native Image
tool installed in Listing 2.5. Second, one that builds up on the first one, but also provides
a musl libc [18] toolchain which allows us to create fully statically linked executables in
Listing 2.6.

1 # LICENSE UPL 1.0
2 #
3 # Copyright (c) 2023 Oracle and/or its affiliates. All rights reserved.
4 #
5
6 ARG BASE_IMAGE=container-registry.oracle.com/os/oraclelinux:8-slim
7
8 FROM ${BASE_IMAGE}
9

10 LABEL \
11 org.opencontainers.image.url=’https://github.com/graalvm/container’ \
12 org.opencontainers.image.source=’https://github.com/graalvm/container/

tree/master/native-image-community’ \
13 org.opencontainers.image.title=’Native Image Community Edition’ \
14 org.opencontainers.image.authors=’GraalVM Sustaining Team <graalvm-

sustaining_ww_grp@oracle.com>’ \

CHAPTER 2. BACKGROUND 11

15 org.opencontainers.image.description=’GraalVM Native Image Community
Edition ahead of time compilation functionality to generate under
closed-world assumption an executable image or a shared object. This
resulting binary includes the application, the libraries, the JDK

and does not run on the Java VM, but includes necessary components
like memory management and thread scheduling etc..’

16
17 # Note: If you are behind a web proxy, set the build variables for the

build:
18 # E.g.: docker build --build-arg ’https_proxy=...’ --build-arg ’

http_proxy=...’ --build-arg ’no_proxy=...’ ...
19
20 ARG GRAALVM_VERSION=23.0.0
21 ARG JAVA_VERSION=20
22 ARG YUM_REPO=""
23 ARG YUM_REPO_DEFAULT=https://yum.oracle.com/repo/OracleLinux/OL8/graalvm/

community/
24 ARG TEMP_REGION=""
25
26 ENV LANG=en_US.UTF-8 \
27 JAVA_HOME=/usr/lib64/graalvm/graalvm-community-java${JAVA_VERSION}
28
29 WORKDIR /app
30
31 RUN if ["$YUM_REPO" == ""]; then YUM_REPO_CURRENT="$YUM_REPO_DEFAULT\

$basearch"; else YUM_REPO_CURRENT="$YUM_REPO"; fi \
32 && echo -e "\
33 [ol8_graalvm_community]\n\
34 name=Oracle Linux 8 graalvm community (\$basearch)\n\
35 baseurl=$YUM_REPO_CURRENT\n\
36 gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle\n\
37 gpgcheck=1\n\
38 enabled=1\
39 " > /etc/yum.repos.d/ol8_graalvm_community.repo \
40 && echo "$TEMP_REGION" > /etc/dnf/vars/ociregion \
41 && microdnf --enablerepo ol8_codeready_builder install -y graalvm-

community-${JAVA_VERSION}-native-image \
42 && rm -rf /var/cache/yum \
43 && echo "" > /etc/dnf/vars/ociregion \
44 && echo -e "\
45 [ol8_graalvm_community]\n\
46 name=Oracle Linux 8 graalvm community (\$basearch)\n\
47 baseurl=$YUM_REPO_DEFAULT\$basearch\n\
48 gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle\n\
49 gpgcheck=1\n\
50 enabled=1\
51 " > /etc/yum.repos.d/ol8_graalvm_community.repo
52
53 ENTRYPOINT ["native-image"]
54 CMD ["--version"]

Listing 2.5: native-image-community Dockerfile based on Oracle Linux 8 and Java 20 for
GraalVM 23.0.0 [25]

1 # LICENSE UPL 1.0
2 #
3 # Copyright (c) 2015,2022 Oracle and/or its affiliates. All rights reserved

.

12 2.1. GRAALVM

4 #
5
6 ARG GRAALVM_VERSION=23.0.0
7
8 ARG BASE_IMAGE=ghcr.io/graalvm/native-image-community:20-ol8
9

10 FROM ${BASE_IMAGE} as base
11
12 FROM base as muslib
13
14 LABEL \
15 org.opencontainers.image.url=’https://github.com/graalvm/container’ \
16 org.opencontainers.image.source=’https://github.com/graalvm/container/

tree/master/native-image-community’ \
17 org.opencontainers.image.title=’Native Image Community Edition’ \
18 org.opencontainers.image.authors=’GraalVM Sustaining Team <graalvm-

sustaining_ww_grp@oracle.com>’ \
19 org.opencontainers.image.description=’GraalVM Native Image Community

Edition ahead of time compilation functionality to generate under
closed-world assumption an executable image or a shared object. This
resulting binary includes the application, the libraries, the JDK

and does not run on the Java VM, but includes necessary components
like memory management and thread scheduling etc..’

20
21 ARG TEMP_REGION=""
22
23 ARG MUSL_LOCATION=http://more.musl.cc/10/x86_64-linux-musl/x86_64-linux-

musl-native.tgz
24
25 ARG ZLIB_LOCATION=https://zlib.net/fossils/zlib-1.2.11.tar.gz
26
27 ENV TOOLCHAIN_DIR=/usr/local/musl \
28 CC=$TOOLCHAIN_DIR/bin/gcc
29
30 RUN echo "$TEMP_REGION" > /etc/dnf/vars/ociregion \
31 && rm -rf /etc/yum.repos.d/ol8_graalvm_community.repo \
32 && mkdir -p $TOOLCHAIN_DIR \
33 && microdnf install -y wget tar gzip make \
34 && wget $MUSL_LOCATION && tar -xvf x86_64-linux-musl-native.tgz -C

$TOOLCHAIN_DIR --strip-components=1 \
35 && wget $ZLIB_LOCATION && tar -xvf zlib-1.2.11.tar.gz \
36 && cd zlib-1.2.11 \
37 && ./configure --prefix=$TOOLCHAIN_DIR --static \
38 && make && make install
39
40 FROM base as final
41 COPY --from=muslib /usr/local/musl /usr/local/musl
42
43 RUN echo "" > /etc/dnf/vars/ociregion
44
45 ENV TOOLCHAIN_DIR=/usr/local/musl \
46 CC=$TOOLCHAIN_DIR/bin/gcc
47
48 ENV PATH=$TOOLCHAIN_DIR/bin:$PATH
49
50 ENTRYPOINT ["native-image"]
51 CMD ["--version"]

CHAPTER 2. BACKGROUND 13

Listing 2.6: native-image-community Dockerfile with a musl libc toolchain based on Oracle
Linux 8 and Java 20 for GraalVM 23.0.0 [26]

2.2 Virtualization Tools

A virtualization tool is used to build and run so-called containers on a host system. It
is a form of virtualization which means, the container operates as a separate isolated
environment. The main use cases for virtualization tools, such as Docker [2] or Podman
[27], are continuous integration and continuous delivery, where standardized environments
are created to allow for a more streamlined development process. Furthermore, we can
run multiple containers at the same time, which makes it viable to run multiple services
at the same host system, while requiring less overhead than other forms of virtualization.

A container does not rely on the host system’s environment, therefore, it contains
everything needed to run whichever application it was built for. By default, a container
is very well isolated from the host system. However, with virtualization tools, we also
can control the level of isolation of the container’s network storage or other subsystems.
The container may have no network, or storage from the host system is mounted into a
container, thus the container is not fully isolated from the host system but rather makes
use of the same files if necessary.

The base for a container is a so-called image, which is a template for a container.
Therefore, we can use one image to create multiple containers in the same environment.
Images are either built from scratch or used from others, that created and published them
in so-called registries. Furthermore, we can also base an image on another image and
set it up to our needs. For building images, the virtualization tool needs step-by-step
instructions on how to do that. For virtualization tools Docker and Podman, we need to
create a so-called Dockerfile, which specifies the steps a virtualization tool has to take to
create the requested image. As a container image is read-only, we have the same initial
state of the container every time we run a container based on an image. Changes made
during a container’s lifetime then only affect the container rather than the image, which
results in the image remaining unchanged and reusable for other containers at the same
time. Furthermore, if we want to build an image that already exists, or we make use of
an image that already exists on a host system, the existing image is reused.

Dockerfiles have a defined format and contain specific commands, such as FROM for
creating an image from another base image or RUN for executing commands required for
the image. The following commands will be used in this thesis:

• FROM <image>[:<tag>] [AS <name>]: A Dockerfile must begin with a FROM
instruction, and it specifies the parent image which is used for building the image
described by the Dockerfile. Each FROM creates a new build stage and can be
used multiple times in a Dockerfile, however, each FROM clears the state created by
previous instructions. Furthermore, a build stage may be named and referred to by
this name in other build stages.

• LABEL {<key>=<value>}: Adds metadata as a key-value pairs to an image.

• ARG <name>[=<default-value>]: Defines a build-time variable that a user can
pass to the builder at image build time. ARG is the only command allowed before

14 2.2. VIRTUALIZATION TOOLS

FROM if the defined argument is used in the FROM command.

• ENV {<key>=<value>}: Sets an environment variable to the specified value.

• WORKDIR <path>: Sets the working directory for any instruction. The root
directory “/“ by default, however, this may already be set to another value by the
used parent image. Relative paths change the WORKDIR relative to itself.

• RUN <command>: Executes any commands on the current image.

• COPY {<src>} <dest>: Copies files from a source relative to the build context to
a destination path in the containers’ file system. Adding --from allows copying files
from previous named build stages.

• ENTRYPOINT [“executable”, “param1”, “param2”]: Configures a container to run
as an executable with an entry point relative to the WORKDIR.

• CMD [“executable”,“param1”,“param2”]: Only the last CMD command in a Dock-
erfile will take effect. The CMD command’s main purpose is to provide defaults
for executing a container. If an executable was set in ENTRYPOINT, the exe-
cutable in CMD may be omitted and default parameter values for the executable in
ENTRYPOINT are added here.

Overall, the usual workflow for running containers is to first create a Dockerfile based on
a parent image, then build the desired image and run the image as a container. Therefore,
virtualization tools do at least offer a command-line interface, but there is no standard for
virtualization tools. However, the focus of this bachelor’s thesis is on Docker and Podman.
Listing 2.7 shows example usages of Docker for building an image and running a container
according to the command-line interface description for docker build [4] and docker run
[5]. This example creates a container image “myimage” with the build context “.” given
a Dockerfile named “myDockerfile” which is located in the current working directory.
The docker run command then runs the container, mounts a read-only directory called
input on the current working directory to the container’s root directory, and executes its
specified command. Additionally, no network access is provided for the container, and it
is automatically stopped after the execution has finished.

The tools Docker and Podman share an equivalent command-line interface for building
an image and running a container, therefore, Podman may be used as a synonym for
Docker. The main difference between Podman and Docker is, that Docker uses a daemon
and needs root privileges without the rootless setup. Furthermore, Docker requires a build
context to be specified, which is then passed to the Docker daemon. Passing the build
context is optional for Podman.

1 $ docker build -f myDockerfile -t myimage .
2
3 $ docker run --network=none --rm --mount,type=bind,source=input,target=/

input,readonly myimage

Listing 2.7: Command lines for building images and running containers

CHAPTER 2. BACKGROUND 15

2.3 JAR File Specification

JAR stands for Java Archive and is a file format defined in the JAR File Specification
[12], which is based on the ZIP file format. Similar to a ZIP file, a JAR is used to
aggregate multiple files into one, such as class files or resources. Additionally, a JAR
file may contain an optional META-INF directory. The META-INF directory can contain
the following special files and directories that are recognized and interpreted by Java to
configure applications, class loaders, and services [12]:

• MANIFEST.MF: Contains metadata for the contained package.

• INDEX.LIST: Contains location information for packages defined in an application
and is used by class loaders to speed up class loading.

• <base-file-name>.SF: Signature for the JAR file.

• <base-file-name>.DSA, <base-file-name>.RSA, or <base-file-name>.EC:
Signature block file associated with the signature file.

• services/: A directory that stores all service provider configurations for JAR files
on the classpath or module path.

• versions/: Contains versioned class and resource files for multi-release JAR files.

In this section, we will focus on the manifest file, more specifically on how to create a
stand-alone executable JAR file, as it is an integral part of the JAR files we make use
of in this thesis. The manifest file consists of a main section and optionally a list of
sections for individual JAR file entries. The file itself, as well as each section, must end
with a newline which is defined as either \CR LF", \LF", or just \CR". The main
section contains metadata of the JAR file itself, such as the manifest file version, vendor
information of the used Java implementation, and classpath URLs of libraries this JAR
file requires. Individual sections cover attributes for packages or files contained in the
JAR file. Multiple sections for the same file are merged, and the bottommost value is used
if an attribute is specified multiple times. Attributes that are not defined are ignored,
therefore, a manifest file may contain implementation-specific attributes for applications.

Furthermore, a manifest file’s main section also contains metadata for creating an exe-
cutable JAR file for stand-alone applications. Executable JAR files require a Main-Class
attribute, which contains the bundled application’s main class without a .class extension.
With the Main-Class specified, JAR files can be invoked as seen in Listing 2.8.

1 $ java -jar <jar-name>.jar

Listing 2.8: Execute a JAR file

2.4 Problem Statement

The main focus of this thesis is on the Native Image Bundles feature and its ability to
recreate a bundle deterministically. Bundles contain all class files of the application, class
files from all dependencies, and some configuration files. This ensures that we have all the
files required to build a native image at any point in time with this bundle. However, when

16 2.4. PROBLEM STATEMENT

building a native image, we might inadvertently access some files on the host systems
or some files from the web that we are not aware of and are not stored in the bundle.
Therefore, if we want to recreate the same native image at a later point in time on a
different machine, those files might not be available anymore, hence building a native
image from the bundle might fail or we build an invalid or malfunctioning image.

To avoid this behavior of the Native Image Bundles feature, we extend it by providing
support for creating the bundle in a controlled environment. This controlled environment is
achieved by setting up a container image. When running the container, we can also restrict
its network access. We can then also run the Native Image tool inside this container,
therefore, it does not have access to the host system and the network at all. With this,
we create a bundle that is known to not rely on the host system or the network. However,
if it relies on either of them, the bundle creation will fail, as we failed to explicitly specify
all necessary inputs required to build a native image fully deterministically. Furthermore,
we want to make sure that the bundle also contains the information on how to create the
used container image, such that we can recreate the same environment for which it is
known to be possible to build a native image out of the bundle.

The secondary goal of this thesis is to implement a feature for executing native image
bundles. A bundle is a JAR file, and it is possible to execute a JAR file with a JVM,
however, this feature is missing for bundles. As a bundle is designed to be an archive
for any application, we need a way to execute any native image bundle, no matter what
application is bundled and how this bundled application is executed. To provide the same
entry point for all bundle execution, we will have to add a standard main class to every
bundle, that uses the files from the bundle to initialize the environment for execution and
execute the bundled application.

17

Chapter 3

Implementation

The implementation of this thesis is based on the already existing Native Image Bundles
feature (see Section 2.1.3). It serves as an extension to the Native Image tool’s command-
line interface, more specifically the Native Image Bundles arguments --bundle-create and
--bundle-apply and the usage of bundle files. The extended functionality of the Native
Image Bundles arguments comprises building the native image for the bundle inside a
virtualized container and creating a bundle without building a native image. Furthermore,
a so-called Bundle Launcher is introduced and injected into a native image bundle. The
Bundle Launcher enables executing a bundled application on any JVM by executing the
native image bundle as a JAR file. All dependencies are then loaded from within the
bundle.

In this section, we will discuss implementation details on the new features introduced
to Native Image Bundles. In Section 3.1, we will give an overview of the extensions to the
Native Image Bundles file format and their purpose. In Sections 3.2 and 3.3, the Native
Image Bundles feature extension for the virtualized Native Image Bundles Build will be
introduced. Finally, in Section 3.4, we will discuss the Bundle Launcher extension, which
allows us to execute the application archived in a bundle.

3.1 Native Image Bundles Extensions

First, we want to introduce changes made to the created bundle itself, which are limited
to the format of Native Image Bundles. To cover the new functionality, a native image
bundle permanently stores the configuration files used to build a container image, as well
as executing a bundle, such as the command-line arguments needed to run the bundled
application as a JAR file. Furthermore, we inject a Bundle Launcher (see Section 3.4)
into every created bundle.

A native image bundle keeps its general structure and all files as described in 2.1.3.
In Figure 3.1 we can see the extensions made to Native Image Bundles file format, with
two more configuration files, a Dockerfile, and the compiled Bundle Launcher. The added
configuration files are used to capture and store information for the new features:

• container.json: If a native image bundle is created and the corresponding native
image is built, this configuration file captures the used virtualization tool, its version,
and the name of the virtualized image. However, we have two more cases to pay
attention to:

18 3.2. VIRTUALIZED NATIVE IMAGE BUILD

bundle-file.nib

META-INF

input

...

stage

container.json

Dockerfile

run.json

...

output

com.oracle.svm.driver.launcher

Figure 3.1: Extended Native Image Bundles file format

1. The native image is built without a container: There is no virtualization
information available, which means this file is omitted.

2. The native image is not built: This is called a dry-run, where we just create a
bundle, but not the actual native image. This may occur if we want to test,
whether we can create a native image bundle given a specific input, or if we
only want to create a more lightweight bundle, as we do not build and store
the native image in the bundle. Therefore, we also do not build a container
image, thus we omit to add the file to the bundle. However, we may specify a
virtualization tool, which will then be captured in this file.

• Dockerfile: The Dockerfile used to create the container image in a virtualized build
or the default Dockerfile (see Section 3.3.2) otherwise.

• run.json: Contains all command-line arguments necessary to execute a native image
bundle as a JAR file, excluding classpath and module path arguments.

• com.oracle.svm.driver.launcher: Contains the compiled Bundle Launcher, which
is used to execute the bundled application as a JVM application.

3.2 Virtualized Native Image Build

Whenever we create a native image bundle, by default a native image is built as well.
However, this bundle and the corresponding native image are built on the host system.
This makes the process prone to missed files or configuration setups. For example, the
Native Image Build process depends on some file or configuration, but the user is not
explicitly aware of that. To identify such cases, we introduce virtualized bundle builds.
Therefore, we add the option container to the bundle arguments that can be set to trigger
a virtualized bundle build. If we use this option, the Native Image tool takes a Dockerfile,

CHAPTER 3. IMPLEMENTATION 19

either from the user as a path, the existing bundle during --bundle-apply, or the default
Dockerfile (see Section 3.3.2). Then a container image is created with this Dockerfile as
its template. Finally, we run the container and the host system’s GraalVM JDK, and all
required source files are mounted into the container and the Native Image tool is executed
inside.

3.2.1 Parse Extended Native Image Bundles Options

The extension of the Native Image Bundles feature adds three new options. These options
are parsed separately from the already existing bundle options (see Listing 3.1) and have
to be separated from the main bundle arguments --bundle-apply and --bundle-create with
a comma. The first option dry-run is not specific to virtualized builds, it can be used for
any bundle build to integrate the --dry-run argument of Native Image into the bundle
arguments. The other two options control whether the bundle is built in a virtualized
environment and how this environment is set up. The extended options have the following
implications for bundle builds:

1. dry-run: Creates a native image bundle without building the actual native image.
As a result, we will get all the files required for building a native image captured in
a native image bundle, but not the native image itself. This behavior was previously
achieved by using the Native Image argument --dry-run combined with one of the
bundle arguments. Therefore, this option serves as a stand-in, that integrates the
existing way of building bundles without native images into the bundle arguments.

2. container: Creates a ContainerSupport object, that fetches configuration files
from the bundle’s stage directory and stores all required information for virtualization.
It allows the specification of a virtualization tool according to Section 4.1. If a
virtualization tool is specified with this option, we check whether it is supported,
otherwise, the bundle creation fails. Furthermore, this option is only allowed once
to have one unique virtualization environment for the Native Image Build. This
ContainerSupport object is then used to create a container image, run the
container, and build a native image inside it instead of directly on the host system.

3. dockerfile: Builds the container image used for building a native image with the
provided custom Dockerfile. May only be specified after container, as we need a
ContainerSupport object to capture the Dockerfile. However, if this option
is omitted on bundle creation, we make use of the default Dockerfile described in
Section 3.3.2.

1 switch (optionKey) {
2 case DRY_RUN_OPTION -> nativeImage.setDryRun(true);
3 case CONTAINER_OPTION -> {
4 if (containerSupport != null) {
5 throw NativeImage.showError(String.format("native-image

bundle allows option %s to be specified only once."
, optionKey));

6 }
7 containerSupport = new ContainerSupport(stageDir,

NativeImage::showError, LogUtils::warning, nativeImage::
showMessage);

8 useContainer = true;

20 3.2. VIRTUALIZED NATIVE IMAGE BUILD

9 if (optionValue != null) {
10 if (!ContainerSupport.SUPPORTED_TOOLS.contains(

optionValue)) {
11 throw NativeImage.showError(String.format("

Container Tool ’%s’ is not supported, please use
one of the following tools: %s", optionValue,
ContainerSupport.SUPPORTED_TOOLS));

12 }
13 containerSupport.tool = optionValue;
14 }
15 }
16 case DOCKERFILE_OPTION -> {
17 if (containerSupport == null) {
18 throw NativeImage.showError(String.format("native-image

bundle option %s is only allowed to be used after
option %s.", optionKey, CONTAINER_OPTION));

19 }
20 if (optionValue != null) {
21 containerSupport.dockerfile = Path.of(optionValue);
22 if (!Files.isReadable(containerSupport.dockerfile)) {
23 throw NativeImage.showError(String.format("

Dockerfile ’%s’ is not readable",
containerSupport.dockerfile.toAbsolutePath()));

24 }
25 } else {
26 throw NativeImage.showError(String.format("native-image

option %s requires a dockerfile argument. E.g. %s=
path/to/Dockerfile.", optionKey, optionKey));

27 }
28 }
29 default -> throw NativeImage.showError(String.format("Unknown

option %s. Use --help-extra for usage instructions.",
optionKey));

30 }

Listing 3.1: Parsing extended Native Image Bundles options

3.2.2 Check for Virtualization Tool

Virtualized Native Image Builds require a virtualization tool to be installed on the host
system. Therefore, we fetch the host system’s PATH environment variable and look for
an executable virtualization tool. Upon finding it, we know it is available on the system
and may be used for the containerized build. In Listing 3.2, we create and iterate over
a stream of all paths in the environment variable PATH and look for any location that
contains the requested executable. The virtualization tool is either provided by the user or
the configuration files of a bundle during --bundle-apply. However, if no tool is specified,
we check if either of the supported tools is available and make use of it (see Listing 3.3).

1 private static boolean isToolAvailable(String toolName) {
2 return Arrays.stream(System.getenv("PATH").split(":"))
3 .map(str -> Path.of(str).resolve(toolName))
4 .anyMatch(Files::isExecutable);
5 }

Listing 3.2: Check virtualization tool availablility

CHAPTER 3. IMPLEMENTATION 21

1 for (String supportedTool : SUPPORTED_TOOLS) {
2 if (isToolAvailable(supportedTool)) {
3 if (supportedTool.equals("docker") && !isRootlessDocker

()) {
4 messagePrinter.accept(BundleLauncher.

BUNDLE_INFO_MESSAGE_PREFIX + "Rootless context
missing for docker.");

5 continue;
6 }
7 tool = supportedTool;
8 toolVersion = getToolVersion();
9 break;

10 }
11 }
12 if (tool == null) {
13 throw errorFunction.apply(String.format("Please install one

of the following tools before running containerized
native image builds: %s", SUPPORTED_TOOLS), null);

14 }

Listing 3.3: Find a supported virtualization tool

Furthermore, if the used virtualization tool is Docker, we also have to check for the
availability of the rootless context, which enables us to use Docker without root privileges
(see Section 4.1).

3.2.3 Build Container Image

Before we can run a container from a container image, we either have to build the container
image or make use of an existing one, that was built with the same Dockerfile. Each
container image that is created by the Native Image tool gets the SHA-1 hash of the used
Dockerfile as its name. Therefore, we can check for existing container images by looking
for a container image on the host system that has the hash of the current Dockerfile as its
name.

However, we cannot be sure if the host system contains a different container image
with this name. To avoid unintended behavior, or in the worst case malicious use of
this feature, we will only use this information to skip redundant log messages from the
virtualization tool. Virtualization tools supported by this feature can be used to check if
the container image exists or not. Therefore, we build the container image as usual, and
it is up to the virtualization tool to reuse an existing container image.

In Listing 3.4 we can see that we first look for a specific container image. The function
getFirstProcessResultLine returns the first line from the output of a command
passed to it in a ProcessBuilder or null if the response is empty. The images
command’s result is empty if the requested container image name does not exist. Thus, if
it returns any string value, we know that there exists a container image that has at least
the same name. Most likely, the existing container image is the required one, therefore,
we omit the logs of the virtualization tool and replace them with a custom log message.
However, even if we found an existing container image, we call the build functionality of
the virtualization tool. This leads to the following scenarios:

• Container image name exists: We still execute the build command to make sure
that the container image is the correct one. If it is different a new container image

22 3.2. VIRTUALIZED NATIVE IMAGE BUILD

is created, if not, which should be the most likely case, the virtualization tool reuses
the existing container image.

• Container image name does not exist: We create a new container image for the given
Dockerfile and forward the logs of the virtualization tool to the Native Image tool.
However, if the virtualization tool has the same container image with a different
name, it will reuse this container image and add the new name as an alias to it.

1 private int createContainer() {
2 ProcessBuilder pbCheckForImage = new ProcessBuilder(tool, "images",

"-q", image + ":latest");
3 ProcessBuilder pb = new ProcessBuilder(tool, "build", "-f",

dockerfile.toString(), "-t", image, ".");
4
5 String imageId = getFirstProcessResultLine(pbCheckForImage);
6 if (imageId == null) {
7 pb.inheritIO();
8 } else {
9 messagePrinter.accept(String.format("%sReusing container image

%s.%n", BundleLauncher.BUNDLE_INFO_MESSAGE_PREFIX, image));
10 }
11
12 Process p = null;
13 try {
14 p = pb.start();
15 int status = p.waitFor();
16 if (status == 0 && imageId != null && !imageId.equals(

getFirstProcessResultLine(pbCheckForImage))) {
17 try (var processResult = new BufferedReader(new

InputStreamReader(p.getInputStream()))) {
18 messagePrinter.accept(String.format("%sUpdated

container image %s.%n", BundleLauncher.
BUNDLE_INFO_MESSAGE_PREFIX, image));

19 processResult.lines().forEach(messagePrinter);
20 }
21 }
22 return status;
23 } catch (IOException | InterruptedException e) {
24 throw errorFunction.apply(e.getMessage(), e);
25 } finally {
26 if (p != null) {
27 p.destroy();
28 }
29 }
30 }

Listing 3.4: Build container image

3.2.4 Run Container for Native Image Build

Finally, after the container image is built and ready to run, we have to create the command
line that needs to be executed for starting the container and running the Native Image
Build inside it. Listing 3.5 depicts the creation of the command that sets up the virtualized
environment for the actual Native Image Build.

CHAPTER 3. IMPLEMENTATION 23

By default, a started container runs until it is stopped manually, however, we do not
need the container any longer after we finish building the native image. With the option
--rm, we specify, that the container gets stopped as soon as the command we passed to it
finished execution.

To restrict what goes in and comes out of the virtualized environment for the native
image built, on the one hand, we can disable network access for the container. With that,
we avoid the network as a source of error for non-deterministic native image builds. We can
disable network access for a container, by adding the command-line option --network=none
to the run command.

On the other hand, we also want to restrict access to files on the host system. We do
not want to fully disable access to the host system, because copying source files into a
container and the resulting native image out of the container is inefficient and unnecessary.
For creating bundles, we have to define an input directory, and the Native Image tool
then also creates an output directory. Furthermore, command line arguments are passed
to the Native Image tool with argument files [13]. To keep control of which directories
and files will be available to the Native Image tool during the Native Image Build, we
declare which directories and files get mapped into the container. This comprises the host
system’s GraalVM, argument files used for building, and the bundle input and output
directories. Therefore, we add one --mount argument for each directory and file mounted
into the container.

Additionally, we also have to consider the environment variables required for building
a native image. One argument for each variable, containing its name and value, is added
to the run command to inject the required environment variables into the container.

1 public List<String> createCommand(Map<String, String>
containerEnvironment, Map<Path, TargetPath> mountMapping) {

2 List<String> containerCommand = new ArrayList<>();
3
4 // run docker tool without network access and remove container

after image build is finished
5 containerCommand.add(tool);
6 containerCommand.add("run");
7 containerCommand.add("--network=none");
8 containerCommand.add("--rm");
9

10 // inject environment variables into container
11 containerEnvironment.forEach((key, value) -> {
12 containerCommand.add("-e");
13 containerCommand.add(key + "=" + BundleLauncherUtil.

quoteShellArg(value));
14 });
15
16 // mount java home, input and output directories and argument files

for native image build
17 mountMapping.forEach((source, target) -> {
18 containerCommand.add("--mount");
19 List<String> mountArgs = new ArrayList<>();
20 mountArgs.add("type=bind");
21 mountArgs.add("source=" + source);
22 mountArgs.add("target=" + target.path);
23 if (target.readonly) {
24 mountArgs.add("readonly");
25 }
26 containerCommand.add(BundleLauncherUtil.quoteShellArg(String.

24 3.3. CAPTURE VIRTUALIZATION RELATED INFORMATION

join(",", mountArgs)));
27 });
28
29 // specify container name
30 containerCommand.add(image);
31
32 return containerCommand;
33 }

Listing 3.5: Create command for building the native image inside a container

3.3 Capture Virtualization Related Information

After successfully building a native image inside a container, we want to capture and
store all related information in the native image bundle. This is necessary to ensure that
we can rebuild the same native image at any point in the same virtualized environment,
given the same virtualization tool and tool version are available on the host system.

3.3.1 Virtualization Tool

Virtualized builds for Native Image Bundles support the virtualization tools Podman and
Docker (see Section 4.1), hence the virtualization tool is another variable for creating a
native image inside a container. Therefore, we capture the tool that was used for creating
the native image bundle along with its version. Furthermore, the name of the built
container image, which is the hash of the contents of the used Dockerfile, is also captured.
All this information gets stored in container.json in the bundles’ stage directory, as seen
in Figure 3.1.

Information that is not present during bundle creation is omitted. For example, if we
create a bundle without building the corresponding native image, we will not create the
container image, therefore we do not have a container image name to add here. If we
create the native image bundle without a container, no information is present, thus the
whole file is omitted.

Information that got captured can be used later on. If we, for example, create the
native image bundle inside a container, we will use the same virtualization tool for applying
or executing the bundle by default. However, this can be overruled if another virtualization
tool is specified with the container option. Additionally, the container image name is
used to check whether the required container image is already present on the system that
applies or executes a bundle.

3.3.2 Dockerfile

To recall which container image was used for the Native Image Build, we store the
Dockerfile that describes the container image. A Dockerfile is stored in every native image
bundle, regardless of whether a native image was built inside a container, or even built
at all. This means we need to have a default Dockerfile, but it ensures that there is a
Dockerfile available when needed, for example, if the bundle is executed virtualized with
the Bundle Launcher (see Section 3.4.3).

Listing 3.6 shows the default Dockerfile, which is added to the bundle for non-virtualized
builds, and if no Dockerfile was explicitly specified with the Native Image Bundles argument.

CHAPTER 3. IMPLEMENTATION 25

The default Dockerfile is based on the Oracle Linux 8 GraalVM native image Dockerfile
from the GraalVM container GitHub repository [10]. To base the default Dockerfile on
the ones in the container repository, we had the option to choose between Oracle Linux 7,
8, or 9. We selected Oracle Linux 8 because it provides a good middle ground between
being more mature compared to Oracle Linux 9 and being supported longer compared to
Oracle Linux 7. Compared to the GraalVM container repository, we do not need a fixed
Java version. Instead, if the Native Image Builder runs the container image, it mounts
itself into the container, such that it is available for building a native image inside.

1 ARG BASE_IMAGE=container-registry.oracle.com/os/oraclelinux:8-slim
2
3 FROM ${BASE_IMAGE} as base
4
5 RUN microdnf update -y oraclelinux-release-el8 \
6 && microdnf --enablerepo ol8_codeready_builder install bzip2-devel ed

gcc gcc-c++ gcc-gfortran gzip file fontconfig less libcurl-devel
make openssl openssl-devel readline-devel tar glibc-langpack-en \

7 vi which xz-devel zlib-devel findutils glibc-static libstdc++ libstdc
++-devel libstdc++-static zlib-static \

8 && microdnf clean all
9 RUN fc-cache -f -v

10
11 ENV LANG=en_US.UTF-8 \
12 JAVA_HOME=/graalvm
13
14 WORKDIR /

Listing 3.6: Native Image Bundles default Dockerfile

Furthermore, the Native Image tool also supports building statically linked native
images [28]. Such builds require a musl pipeline, make, configure, and zlib to be set up on
the system. With containers, we can automate setting up the system for building statically
linked native images within a Dockerfile. Therefore, we add an extension to the default
Dockerfile that sets up the system in a way to support building statically linked native
images, if the command-line arguments --static and --libc=musl were passed to the Native
Image tool. In Listing 3.7 we can see two more build stages. The first fetches and installs
all required tools for building a statically linked native image. The second added build
stage then copies the installed tools into the default container image. This approach saves
storage, as we do not keep files and tools that were only used for installing the pipeline in
the container image. This Dockerfile extension is again based on the GraalVM container
repository, more specifically the Oracle Linux 8 GraalVM native-image Dockerfile with
muslib extension. A native image bundle built for a statically linked native image will
not contain any additional files for facilitating such builds in the bundle compared to not
statically linked builds. However, the default Dockerfile in Listing 3.6 will be extended by
appending the Dockerfile shown in Listing 3.7 to it.

1 FROM base as muslib
2
3 ARG TEMP_REGION=""
4 ARG MUSL_LOCATION=http://more.musl.cc/10/x86_64-linux-musl/x86_64-linux-

musl-native.tgz
5 ARG ZLIB_LOCATION=https://zlib.net/fossils/zlib-1.2.11.tar.gz
6
7 ENV TOOLCHAIN_DIR=/usr/local/musl \
8 CC=$TOOLCHAIN_DIR/bin/gcc

26 3.4. BUNDLE LAUNCHER

9
10 RUN echo "$TEMP_REGION" > /etc/dnf/vars/ociregion \
11 && rm -rf /etc/yum.repos.d/ol8_graalvm_community.repo \
12 && mkdir -p $TOOLCHAIN_DIR \
13 && microdnf install -y wget tar gzip make \
14 && wget $MUSL_LOCATION && tar -xvf x86_64-linux-musl-native.tgz -C

$TOOLCHAIN_DIR --strip-components=1 \
15 && wget $ZLIB_LOCATION && tar -xvf zlib-1.2.11.tar.gz \
16 && cd zlib-1.2.11 \
17 && ./configure --prefix=$TOOLCHAIN_DIR --static \
18 && make && make install
19
20
21 FROM base as final
22
23 COPY --from=muslib /usr/local/musl /usr/local/musl
24
25 RUN echo "" > /etc/dnf/vars/ociregion
26
27 ENV TOOLCHAIN_DIR=/usr/local/musl \
28 CC=$TOOLCHAIN_DIR/bin/gcc
29
30 ENV PATH=$TOOLCHAIN_DIR/bin:$PATH

Listing 3.7: Extension of the default Dockerfile for building statically linked native images

3.4 Bundle Launcher

For the second objective of this thesis, we added another feature to Native Image Bundles,
which allows us to execute the bundled application. A native image bundle is built up
similarly to a JAR file. It contains a META-INF directory with a manifest file. The
manifest file is set up in a way that each native image bundle can be executed as a JAR
file. However, as Native Image Bundles have a specific internal structure and may contain
modules or another JAR file as its main application, it was previously not possible to
directly execute the bundled application’s main class.

To make the bundled application executable, we implemented a new Java application
named “Bundle Launcher”. It is a self-contained package, which means that it has all the
necessary functionality to parse the bundle’s configuration files and internal structure,
such that it can set up the classpath and/or module path. Furthermore, the Bundle
Launcher adds support for special command-line arguments, such as running the bundled
application inside a container or attaching a Native Image agent.

To make this feature available for all native image bundles, the Bundle Launcher
package is injected into every bundle. To make the bundled application executable, we first
need to make the bundle file itself executable and then launch the bundled application from
there. Therefore, the Bundle Launcher’s main class is set as the value of the Main-Class
attribute in the bundle’s manifest file, thus the bundle file can be executed with any JVM
as a JAR file with the Bundle Launcher as its main class.

3.4.1 Bundle Launcher Package

The Bundle Launcher consists of its core part, the BundleLauncher class, which we
set as the main class in the bundle’s manifest file for every native image bundle created.

CHAPTER 3. IMPLEMENTATION 27

com/oracle/svm/driver/launcher

BundleLauncher

BundleLauncherUtil

ContainerSupport

configuration

BundleArgsParser

BundleConfigurationParser

BundleContainerSettingsParser

BundleEnvironmentParser

BundlePathMapParser

json

BundleJSONParser

BundleJSONParserException

Figure 3.2: Bundle Launcher package structure

The rest of the package is structured according to Figure 3.2. The Bundle Launcher also
overlaps with the existing BundleSupport class and Native Image Bundles functionality
on many occasions. Therefore, common functionality is extracted into the Bundle Launcher
to avoid code duplication and still make the Bundle Launcher work stand-alone.

The Bundle Launcher supports virtualized execution of bundled applications, therefore,
core additions created for the first part of this thesis are moved into the ContainerSupport
class. It stores all virtualization information such as the used virtualization tool and
version as well as the used Dockerfile and functionality for setting up, building, and
running container images.

Although most code for the Native Image Bundles feature implementation is located
in BundleSupport, this class also makes use of some helper classes from the GraalVM
project, such as JSONParser and JSONParserExcpetion. Therefore, the core parts
of those classes need to be extracted and added to the Bundle Launcher, and all references
to these helper classes in BundleSupport are moved to the newly created classes.
The BundleLauncherUtil class contains single helper functions from multiple other
packages in the project that are required for the BundleLauncher.

Each native image bundle contains essential information in configuration files in
its stage directory. The most important one for executing a bundled application is
the newly introduced run.json, which contains all command-line arguments for the
bundled application that were passed to the Native Image tool during bundle creation.
To parse the JSON files, we make use of the reused JSONParser. The raw JSON
information gets parsed by one of the bundle configuration parsers, which are all contained
within the Bundle Launcher. In total there are 4 implementations of the abstract

28 3.4. BUNDLE LAUNCHER

BundleConfigurationParser:

• BundleArgsParser: for build.json and run.json, which both store command-line
arguments

• BundleContainerSettingsParser: for container.json, which stores virtual-
ization information in named fields

• BundleEnvironmentParser: for environment.json, which stores environment
variables in key-value pairs

• BundlePathMapParser: for path substitutions.json and path canonicalization.json,
which both store pairs of paths

3.4.2 Inject Bundle Launcher into Native Image Bundles

For executing a native image bundle, we need to make sure that the Bundle Launcher
is available in the bundle after creating it. Therefore, we inject the compiled Bundle
Launcher into the bundles’ root directory. First, the Bundle Launcher is added to the
resources when building the Native Image tool itself. Thus, we have the package available
when we use the Native Image tool. Then, the package can be fetched from the resources
as seen in Listing 3.8 and copied into the bundle.

1 Path bundleLauncherFile = Paths.get("/").resolve(BundleLauncher.
class.getName().replace(".", "/") + ".class");

2 try (FileSystem fs = FileSystems.newFileSystem(BundleSupport.class.
getResource(bundleLauncherFile.toString()).toURI(), new HashMap
<>());

3 Stream<Path> walk = Files.walk(fs.getPath(
bundleLauncherFile.getParent().toString()))) {

4 walk.filter(Predicate.not(Files::isDirectory))
5 .map(Path::toString)
6 .forEach(sourcePath -> {
7 Path target = rootDir.resolve(Paths.get("/"

).relativize(Paths.get(sourcePath)));
8 try (InputStream source = BundleSupport.

class.getResourceAsStream(sourcePath)) {
9 Path bundleFileParent = target.

getParent();
10 if (bundleFileParent != null) {
11 Files.createDirectories(

bundleFileParent);
12 }
13 Files.copy(source, target,

StandardCopyOption.REPLACE_EXISTING)
;

14 } catch (Exception e) {
15 throw NativeImage.showError("Failed to

write bundle-file " + target, e);
16 }
17 });
18 } catch (Exception e) {
19 throw NativeImage.showError("Failed to read bundle launcher

resources ’" + bundleLauncherFile.getParent() + "’", e);
20 }

CHAPTER 3. IMPLEMENTATION 29

Listing 3.8: Fetch the Bundle Launcher from resources and copy it into a native image
bundle

3.4.3 Execute Native Image Bundles

We want to be able to execute the application in a native image bundle with any JVM.
Therefore, we first have to execute the .nib file as if it were a regular JAR file. Listing 3.9
shows the manifest file of an executable bundle, where we added the Bundle Launcher
as the Main-Class argument, which will be executed as the bundle’s main class if we
execute it as a JAR file.

1 Manifest-Version: 1.0
2 Main-Class: com.oracle.svm.driver.launcher.BundleLauncher

Listing 3.9: Manifest file for executable native image bundles

The Bundle Launcher main class then contains a main method that extracts the
bundle to a temporary location and parses any additional command-line arguments. Then
the launcher creates a ProcessBuilder with a new command line for executing the
bundled application and executes it. After the execution of the bundled application is
finished, we will delete the extracted files to avoid any side effects.

The extracted files and additional command-line arguments are used for setting up the
command line that executes the bundled application. However, we only need the following
parts of the bundle:

• run.json: Contains all the arguments that were parsed during bundle creation,
that are necessary for running the application. Therefore, we added a new flag
to the existing APIOption annotation, which marks arguments as needed for
running a bundled application. As soon as we register one of the marked options
in NativeImage we collect them and pass them to Native Image Bundles later.
Furthermore, it contains the argument that specifies what to execute. Either a main
class, a JAR file, a main module, or a module with a main class.

• Classpath and Module Path: For executing a bundled application, we need to
recreate the classpath and/or module path used to create the native image bundle.
The classpath and module path files and directories are contained in the bundle
directories input/classes/cp and input/classes/p respectively. Thus, we can walk
through both directories and add all JAR files and subdirectories to the classpath
and module path arguments for executing the bundled application accordingly.

• environment.json: All environment variables contained in this file are added to
the environment of the ProcessBuilder that executes the bundled application.

• Dockerfile & container.json: These files are used to build the container image
and set up the run command if the bundled application is executed in a container.

Additional command-line arguments are either used by the Bundle Launcher or, if they are
not defined as arguments for the Bundle Launcher, passed on to the bundled application.

Furthermore, the Bundle Launcher supports additional command-line options for
executing the bundled application with a Native Image agent attached, as well as executing
the bundled application inside a container.

30 3.4. BUNDLE LAUNCHER

• Execute with Native Image agent: With this option, we add a command-line
argument to the bundled application execution that attaches a Native Image agent
to the execution. Additionally, we can add an option to automatically update the
bundle file and store the agent’s output in the bundles’ classpath files. However,
this requires the used JDK for executing the bundle to be a GraalVM JDK, with
native-image installed and support for Native Image Bundles. After the execution
of the bundled application is finished, the Bundle Launcher will create a second
command that makes use of the Native Image tool and both bundle arguments,
--bundle-create and --bundle-apply, to create a new bundle from the existing one.

• Virtualized execution: First, we check if container.json exists and contains any
information on virtualization that was captured when creating the bundle. Then,
we build a container image or make use of one that already exists on the system and
conforms to the Dockerfile in the bundle. Finally, the container image is used to
run the bundled application. Therefore, we create a run command for the container,
that also contains the command line for the bundled application.

However, we may also bundle a native image that was built as a shared library, which
is not executable by itself. Consequently, we also have to check if the bundle can be
executed in the first place. For this, we use the run.json file, which is only created and
inserted into the bundle, if the bundle contains an executable application. Thus, if we
don’t find a run.json file in the bundle, we know that this bundle is not executable, and
we can abort the execution (see Listing 3.10).

1 if (!Files.exists(stageDir.resolve("run.json"))) {
2 showMessage(BUNDLE_INFO_MESSAGE_PREFIX + "Bundle " +

bundleFilePath + " is not executable!");
3 System.exit(1);
4 }

Listing 3.10: Abort execution of shared library bundles

31

Chapter 4

Limitations

The extensions to Native Image Bundles rely on some restrictions we applied to the used
environment. More specifically, we restrict the use of virtualized Native Image Builds and
bundle executions by operating systems and supported virtualization tools. In Section 4.1,
we will discuss the limitations imposed on the virtualization tools that can be used for
virtualized Native Image Bundles Builds. Section 4.2 covers the restriction of supported
operating systems for virtualized Native Image Bundles Builds to just Linux.

4.1 Virtualization Tool

The virtualization tools that are supported for the virtualization feature in Native Image
Bundles are Podman and Docker. Both work with the same format for Dockerfiles, which
means that we only have to store one Dockerfile in a bundle and still be able to use
any of the two tools. Furthermore, Podman and Docker feature an almost identical
command-line interface. Both tools can handle the same arguments for checking for
container images, building container images, and running containers, which comprise the
required functionality for the virtualization feature of Native Image Bundles.

With the restriction applied to virtualization tools, we aim to simplify the creation
of command lines that make use of the tools. With both tools having almost identical
command-line interfaces for our use cases, we simply create one command line and use it
with the selected virtualization tool. To support other tools with different command-line
interfaces, we would need to add special treatment for each kind of command-line interface.
This overcomplicates the implementations with almost no benefits, as the two available
tools are already both capable of building and running containers. However, the main
difference between the two supported tools is that Podman is daemonless and does not
require root privileges without any modification.

Furthermore, the virtualization tool Docker is restricted to only the rootless variant.
This allows us to use Docker without root privileges, however, it requires a separate setup
after installing Docker. To switch into the rootless mode, we need to install the rootless
context with the rootless setuptool [3] (see Section 5.1) which comes shipped with Docker.
After switching to the rootless context, we can execute Docker commands without root
privileges.

32 4.2. OPERATING SYSTEM

4.2 Operating System

Docker as well as Podman, and many other virtualization tools are native Linux tools,
and they rely on Linux-specific kernel features for working with containers. Although it is
possible to set up a Virtual Machine (VM) that is capable of running virtualization tools
on other operating systems, this would result in an overhead. Setting up and running a
VM and then installing a supported virtualization tool to build a native image inside a
container would not be feasible to implement for the Native Image tool.

Therefore, the virtualization feature for creating native images as well as for executing
native image bundles is restricted to Linux only. If the container option is used with
any other operating system, the Native Image tool reports a warning to the user, and
virtualization is skipped. The Native Image tool then operates on the host system as if
the container option was omitted. We decided on this behavior, as the main goal of a
user most likely is to build a native image. Furthermore, this allows non-Linux users to
create a bundle that contains configuration files for the virtualization feature, such as a
custom Dockerfile or a virtualization tool that should be used for applying this bundle.

33

Chapter 5

Usage and Evaluation

Both features introduced in this thesis can be used with a command-line interface. However,
the interface for the virtualized Native Image Build makes use of already existing options
of the Native Image tool and serves as an extension to them. The command-line interface
for executing native image bundles on the other hand can only be used if a native image
bundle is executed on JVM. Therefore, all arguments passed to the main class of the
executed bundle are parsed by the Bundle Launcher. The Bundle Launcher then either
consumes the arguments if they are defined or passes them on to the bundled application
if not.

This chapter covers the usage of the new features added to Native Image Bundles and
their evaluation with some real-world examples. First, Section 5.1 describes how to set up
a host system for virtualized builds and how to use the updated command-line interface
of the Native Image tool. Next, in Section 5.2 we introduce the command-line interface
for executing native image bundles, which can be used to execute the bundled application.
Then, in Section 5.3 we cover backward compatibility with the previous Native Image
Bundles version and the implications of the new features. Finally, the tested real-world
examples and the evaluation of the new features are described in Section 5.4.

5.1 Virtualized Image Build

Virtualized image builds can be triggered via extensions of the native-image command-line
interface. It can be used with both Native Image Bundles options --bundle-create and
--bundle-apply. As described in Section 4.1, this extension only supports Podman and
rootless Docker. Therefore, either Podman or Docker has to be installed on the system.
However, Docker is additionally required to be in rootless mode, which can be achieved by
running the rootless setup tool provided by Docker [3]. After switching to rootless mode
(Docker runs in the “rootless” context), Docker may be used for virtualized builds.

1 $ docker context show
2 > default
3
4 $ dockerd-rootless-setuptool.sh install
5 > [INFO] Creating /home/dominik/.config/systemd/user/docker.service
6 > [INFO] starting systemd service docker.service
7 > + systemctl --user start docker.service
8 > + sleep 3
9 > + systemctl --user --no-pager --full status docker.service

10 > ...

34 5.1. VIRTUALIZED IMAGE BUILD

11 > + DOCKER_HOST=unix:///run/user/1000/docker.sock /usr/bin/docker version
12 > ...
13 > + systemctl --user enable docker.service
14 > Created symlink /home/dominik/.config/systemd/user/default.target.wants/

docker.service -> /home/dominik/.config/systemd/user/docker.service.
15 > [INFO] Installed docker.service successfully.
16 > [INFO] To control docker.service, run: ‘systemctl --user (start|stop|

restart) docker.service‘
17 > [INFO] To run docker.service on system startup, run: ‘sudo loginctl

enable-linger dominik‘
18
19 > [INFO] Creating CLI context "rootless"
20 > Successfully created context "rootless"
21 > [INFO] Using CLI context "rootless"
22 > Current context is now "rootless"
23
24 > [INFO] Make sure the following environment variable(s) are set (or add

them to ˜/.bashrc):
25 > export PATH=/usr/bin:$PATH
26
27 > [INFO] Some applications may require the following environment variable

too:
28 > export DOCKER_HOST=unix:///run/user/1000/docker.sock
29
30 $ docker context show
31 > rootless

Listing 5.1: Switch to rootless Docker with dockerd-rootless-setuptool.sh

A virtualized build with the option --bundle-create builds a native image inside a
container and stores it in the created native image bundle. With --bundle-apply, we can
build a native image with Native Image Bundles in a virtualized environment. If the native
image in a bundle was built inside a container, the bundle gets marked as a container
build. Virtualized builds are sticky, which means that if a bundle is marked as a container
build, applying the bundle with the option --bundle-apply will also result in a virtualized
build, even if the option was not explicitly specified.

5.1.1 Command-Line Interface

1 $ native-image --bundle-create[=<bundle-name>][,dry-run][,container[=<
container-tool>][,dockerfile=<dockerfile-path>]]

2 $ native-image --bundle-apply=<bundle-name>[,dry-run][,container[=<
container-tool>][,dockerfile=<dockerfile-path>]]

Listing 5.2: Command-line interface extensions for Native Image Bundles

The extensions to the existing command-line interface as seen in Listing 5.2 are optional.
The Native Image tool with bundle options can be used as before, without any restrictions.
However, we can provide the following extended options, separated by a comma, with the
updated command-line interface:

• dry-run: Runs the Native Image tool with the specified bundle option and also
activates the --dry-run option. This means no native image is built, however, a
native image bundle is created if --bundle-create was specified.

CHAPTER 5. USAGE AND EVALUATION 35

• container[=<container-tool>]: If a native image is built, first a container is built
and run and the Native Image Build is executed inside the container. Allows to
explicitly specify one of the two supported tools, Podman and Docker. Otherwise,
it looks first for Podman, then for Docker on the PATH and uses the first one that
is found.

• dockerfile=<dockerfile-path>: Allows to specify a path to a custom Dockerfile.
It may be an absolute path or relative to the bundle location. This Dockerfile is then
used to build the container image for virtualized builds. However, the host system’s
GraalVM and the bundle’s input and output directories will still get mounted and
used for building a native image. Furthermore, if a native image bundle is created,
this Dockerfile will also be persisted there.

Combining --bundle-apply and --bundle-create, and therefore creating a bundle out
of an existing one also supports these extensions. However, due to both bundle options
being handled by the same object, extended options also apply globally to both bundle
arguments. Therefore, the extended options need to be specified only once in any of the
bundle arguments. However, the Native Image tool will fail if the container option is
specified multiple times or the dockerfile option is specified without the container option.

5.1.2 Updating Virtualization Information in Native Image Bun-
dles

A native image bundle, which was built inside a container also contains additional
information about the used virtualization tool the container image, which was built.
Therefore, we introduced a new JSON file for Native Image Bundles container.json (see
Section 3.1).

The Dockerfile, which was used to build the container image, is copied into the bundle.
Therefore, we can reuse the same Dockerfile with a bundle, or extract it from the bundle
and tinker with it. If we, for example, want to make changes to an existing Dockerfile in
a bundle with the name mybundle.nib, we can use the command in Listing 5.3. Therefore,
we first extract the existing Dockerfile from the bundle and make changes to it. The
command in Listing 5.3 then uses the existing bundle for creating the updated bundle. In
this process, we can specify the new Dockerfile that should be used for the new bundle.
We have to keep in mind that this would also trigger a Native Image Build, however, we
can avoid this by adding the option dry-run.

1 $ native-image --bundle-apply=mybundle.nib,container,dockerfile=
myDockerfile,dry-run --bundle-create

Listing 5.3: Update the bundled Dockerfile

5.2 Execute Native Image Bundles

Every native image bundle that contains an executable application can be executed with
the Bundle Launcher. Therefore, the Bundle Launcher is injected into every created
bundle. We also add a new file run.json in the bundle’s stage directory. However, we
are also able to build native image bundles for shared libraries. As shared libraries are
not executable on their own, it would also not make sense to execute a bundled shared

36 5.2. EXECUTE NATIVE IMAGE BUNDLES

library. Thus, for shared libraries, we omit creating the run.json file as we can not execute
a bundled shared library. If we execute the bundle, the Bundle Launcher can not find the
run.json file. Therefore, we can stop trying to execute the bundle and output an error
message to the user.

5.2.1 Command-Line Interface

1 $ java -jar myBundle.nib [options] [-- bundled-application-options]

Listing 5.4: Command-line interface extensions for the Bundle Launcher

For executing a bundle, the Bundle Launcher requires a JVM and can be called as
seen in Listing 5.4. The Bundle Launcher receives all options and parses them. If an
option is defined in the Bundle Launcher, it consumes the option and acts accordingly.
However, if the Bundle Launcher parses an option that is not defined, it adds it to a list
of arguments that are later passed on to the bundled application.

Options for the Bundle Launcher can be separated from options that are meant for
the bundled application. Therefore, we have to add -- as an argument after the options
that are meant for the Bundle Launcher. Every argument after -- will get added to the
list of arguments that will get passed on to the bundled application later.

The Bundle Launcher supports the following four arguments that will be further
explained in the following sections, some of which contain some additional optional parts:

• --with-native-image-agent[,update-bundle[=<new-bundle-name>]]

• --container[=<container-tool>][,dockerfile=<dockerfile-path>]

• --verbose

• --help

5.2.2 Attach Native Image Agent

With the new executable bundle feature, we can also execute the bundle with an attached
Native Image agent (see Section 2.1.4). A Native Image agent is specified with the option
--agentlib or --agentpath with some sort of output path passed to the option. Additionally,
this also requires the Native Image agent to be available on the host system’s GraalVM.

If we create a bundle with the Native Image tool without the option dry-run, a native
image is created and put into an output directory. The same happens for building a
native image from a bundle. To keep consistent with the current behavior, we decided to
also move the Native Image agent’s output into the bundle’s output directory, as seen
in Figure 5.1. This directory is set as the Native Image agent’s config-output-dir, which
means it is overwritten on successive bundle applications with the attached agent.

This Native Image agent output can then be used equally to the Native Image agent
output produced by running it with the bundled application. Furthermore, we added
the option to add the Native Image agent output to the bundle. Therefore, we have to
add update-bundle to the command-line argument. However, compared to the rest of the
Bundle Launcher, this requires the used JVM to be a GraalVM with a Native Image agent
available. Accordingly, all actions that create or change bundles directly are performed by
Native Image to make sure every bundle is created in precisely the same way. Without

CHAPTER 5. USAGE AND EVALUATION 37

<bundle-name>.output

default

other

launcher

META-INF

native-image

<bundle-name>-agent

Native Image agent files

Figure 5.1: Native Image agent bundle output directory

bundle-file.nib

input

classes

cp

launcher/META-INF/native-image/<bundle-name>-agent

...

stage

...

Figure 5.2: Updated Native Image Bundles format

any further option, update-bundle updates the existing bundle by adding the Native Image
agent’s output to the classpath (see Figure 5.2). However, we can also leave the existing
bundle the same and create a new updated bundle by specifying a new bundle name that
is different from the existing one.

5.2.3 Virtualized Bundle Execution

The --container option builds a container image and executes the bundled application
inside the container instead of the host system. This addition works similarly to the
virtualized Native Image Bundles builds and makes use of the same implementation.
However, virtualized bundle executions run the bundled application in the container
compared to the virtualized Native Image Builds, which just use the container for building
a native image. Therefore, virtualized bundle execution does not make use of the Native
Image tool, hence it does not require the JVM to be a GraalVM. Nevertheless, it still
requires a supported virtualization tool to be available on the host system to build and
run the container.

As described in Section 4.1, this feature only supports Podman and Docker as virtual-

38 5.2. EXECUTE NATIVE IMAGE BUNDLES

ization tools. If no virtualization tool is explicitly specified, we first check for Podman,
then for Docker, and use the first available one. However, if we add =<container-tool> to
the option, we can force the Bundle Launcher to use a specific tool. If the specified tool is
not available, the bundle execution will fail.

Furthermore, executing a bundle virtualized makes use of the already existing Dockerfile
inside a bundle. As described in Section 3.3.2, every bundle, no matter if it contains a
native image that was built inside a container or not, does contain a Dockerfile. This
Dockerfile either is the default Dockerfile from the virtualized Native Image build feature,
or it was manually specified on bundle creation. However, for virtualized bundle executions
it is still possible to override the bundled Dockerfile file, by specifying the path with
,dockerfile=<dockerfile-path>. This ensures that the container image for the application
execution is built with a custom Dockerfile. If the custom Dockerfile does not exist, the
execution of the bundled application will fail.

5.2.4 Other Options

The remaining options for the Bundle Launcher are --verbose and --help.
The verbose option enables verbose output for the Bundle Launcher, which adds

some logs during the execution of the Bundle Launcher. For example, printing the final
command that was executed by the Bundle Launcher, including all arguments such as
classpath and module path entries. However, this does not enable verbose output for the
bundled application. Therefore, if the bundled application also has a --verbose option
defined, and we want to get a verbose output from the bundled application, we have to
specify --verbose after --. Otherwise, the Bundle Launcher identifies and consumes the
--verbose option. Listing 5.5 depicts an example that uses verbose output for the Bundle
Launcher and the bundled application. The first --verbose is consumed by the Bundle
Launcher, and the second --verbose is passed on to the bundled application.

1 $ java -jar mybundle.nib --verbose -- --verbose

Listing 5.5: Use verbose output for the Bundle Launcher and the bundled application

The help option prints the help text, displayed in Listing 5.6, for a native image bundle
without executing the bundled application. Similar to the verbose option, if the help text
of the bundled application is also accessible with --help, we need to add -- before the
--help option to pass the help option on to the bundled application.

1 This native image bundle can be used to launch the bundled application.
2
3 Usage: java -jar bundle-file [options] [bundle-application-options]
4
5 where options include:
6
7 --with-native-image-agent[,update-bundle[=<new-bundle-name>]]
8 runs the application with a native-image-agent attached
9 ’update-bundle’ adds the agents output to the bundle-files

classpath.
10 ’=<new-bundle-name>’ creates a new bundle with the agent

output instead.
11 Note ’update-bundle’ requires native-image to be installed
12
13 --container[=<container-tool>][,dockerfile=<Dockerfile>]
14 sets up a container image for execution and executes the

bundled application

CHAPTER 5. USAGE AND EVALUATION 39

15 from inside that container. Requires podman or rootless
docker to be installed.

16 If available, ’podman’ is preferred and rootless ’docker’
is the fallback. Specifying

17 one or the other as ’=<container-tool>’ forces the use of a
specific tool.

18 ’dockerfile=<Dockerfile>’: Use a user provided ’Dockerfile’
instead of the Dockerfile

19 bundled with the application
20
21 --verbose enable verbose output
22 --help print this help message

Listing 5.6: Bundle Launcher help text

5.3 Backward Compatibility

The additions to Native Image Bundles are introduced in the GraalVM for Java 21 [24]
release, with the previous version of Native Image Bundles as a foundation for the new
features (see Section 2.1.3). Although we made changes to the format of a bundle file, the
main internal structure of bundles is still the same. Therefore, bundles containing the
new features can still be used to create native images with the previous version of the
Native Image tool.

For older bundles, on the one hand, it is possible to build a native image in a container.
On the other hand, it is not possible to execute bundles created with the previous version
of the Native Image tool, as they do not contain the Bundle Launcher. However, we can
update old existing bundles by using it to create a new one with the updated Native
Image tool as shown in Listing 5.7. This creates a new bundle and injects the Bundle
Launcher, a Dockerfile, and the required configuration files into the bundle. Additionally,
the Bundle Launcher is added as Main-Class in the bundle’s manifest file. Afterward,
the bundle may be used to execute the bundled application.

1 $ native-image --bundle-apply=oldbundle.nib --bundle-create=newbundle.nib

Listing 5.7: Use an existing old bundle to create a bundle that supports the new features

5.4 Evaluation

The features added to Native Image Bundles do not aim for any improvements in the
performance of Native Image Bundles creation, nor the file size of a bundle. Instead, these
features focus on archiving, the determinism of building a native image from a bundle, and
the usability of a bundle. However, we do create an overhead due to building a container
image and adding some additional files, which results in slower Native Image Bundles
build times and an increase in the file size of a native image bundle.

Build Performance

The time required for creating a native image bundle with the Native Image tool is only
increased if we make use of the virtualization feature. Otherwise, the Native Image tool
operates as usual with no added overhead at native image build time. However, using the

40 5.4. EVALUATION

virtualization feature adds the overhead of setting up a container for building the native
image and creating the native image bundle. The time added to a Native Image Bundles
Build is influenced by multiple factors:

• Dockerfile: Building the container image may work slower or faster, depending on
the complexity and the number of build steps specified in the Dockerfile, that is
used for the Native Image Bundles Build.

• Network: Fetching a base image for a container image or installing tools in the
container image relies on the network. A slower network connection also slows down
the container image build and therefore the Native Image Bundles Build.

• Available container images: If we can reuse the container image we want to use, the
virtualization overhead for Native Image Bundles Builds is significantly reduced.

Furthermore, the added time to a Native Image Bundles Build is constant and is the same
for any application. This means it does not affect the time for building the actual Native
Image Build.

Native Image Bundles and Native Image File Sizes

Whenever a native image bundle is built with virtualization support enabled, we also need
to store the virtual environment in the bundle. This is required to make use of the same
environment for building a native image from a bundle. Therefore, we add a Dockerfile
and some configuration files to each native image bundle. Furthermore, for executing
a bundle, we also need to add the Bundle Launcher and some additional configuration
files. In total, this adds up to around 100 KB. However, the overhead is independent
of the underlying application for which the bundle is created. Therefore, for real-world
applications, which result in bundles with much bigger file sizes than a few hundred KB,
the overhead presented by the new features is neglectable.

Furthermore, the added features are only part of Native Image Bundles, this means,
the resulting Native Image still does not have any additional inputs. However, there might
be a difference in native image file sizes between virtualized and non-virtualized builds.
We make use of a virtual environment that may have other versions of tools and libraries
used by the installed Native Image tool, that get built into a native image.

Real-World Use Cases & Examples

A possible use case for the new features, and Native Image Bundles in general, is for
archiving sources of a microservice that is built as a native image. For example, we
can create a bundle for every update to the native image in production. Therefore, we
can rebuild a native image at any point in time and be sure that the build will succeed
deterministically. This is why we used some real-world examples for microservices to test
the new features for correctness, such as Spring PetClinic [32] or some of the micronaut
guides [17]. Therefore, we executed the microservice on JVM, as a native image and as a
native image built in a virtualized environment as well as with Native Image Bundles on
JVM. All runs showed the same behavior, we could also observe that the new features
perform similarly to their existing counterparts (native image versus native image built
in a virtualized environment and microservice on JVM versus Native Image Bundles on
JVM).

41

Chapter 6

Conclusion

GraalVM Native Image is a tool that creates a native executable for a Java application.
Furthermore, it provides a feature called Native Image Bundles. Native Image Bundles can
be used to create a so-called bundle for a native image, which contains all inputs required
to build that native image, which should result in a reproducible build of this native
image at any point in time. However, during the Native Image Build process, we have full
access to the host system, thus we might make use of a specific set-up environment or
some resources on the host system that we are not aware of. Thus, we might fail to build
the native image from a bundle on a different system or at a later point in time.

In this bachelor thesis, we implemented two features for Native Image Bundles,
addressing the problem with the reproducibility of Native Image Builds and the usability
of bundles:

• Deterministic builds: To control which files might end up in a bundle and which
environment is used to build it, we made use of virtualization tools. These tools
enable us to create a so-called container, which essentially is a fully controlled
environment for creating a native image bundle. We are able to restrict access to
the network and the host system’s files. Furthermore, we can save the template for
a container, such that we are able to reproduce and reuse the same container at any
given time.

However, we use the virtualization tools by interacting with their command line
implementation. This makes using this feature simpler, as we just have to install the
virtualization tool. The problem with this approach is, that virtualization tools come
with different command-line interfaces. This is why we restricted the support for
virtualization tools to just Docker and Podman as both feature an almost identical
command line interface. Furthermore, the command-line implementations for the
virtualization tools are only available for Linux in the way we need them, therefore
we decided to also restrict this feature to only work with Linux.

• Usability: A bundle is a JAR file that contains everything to create a native
image for an application. Therefore, we also have everything to execute the bundled
application. This is why we added the Bundle Launcher, which we had to inject
into each bundle. Therefore, we provided the Bundle Launcher as a resource to the
Native Image tool, giving it access to class files for the Bundle Launcher during
bundle creation. Using the Native Image tool’s resources, we then can copy the
Bundle Launcher into the bundle.

42

With the Bundle Launcher, we can execute the bundle as a JAR file on a JVM, and
the Bundle Launcher loads the application and its dependencies from the bundle. We
then create and run the command that executes the application. We also extended
this Bundle Launcher to parse additional command-line arguments, such that we can
execute the bundle in a container with the virtualization feature or attach a Native
Image agent to the application execution. However, command-line arguments that
are not defined in the Bundle Launcher are passed on to the executed application.

43

List of Figures

2.1 GraalVM Architecture [7] . 4
2.2 Native Image Bundles file format [21] . 8

3.1 Extended Native Image Bundles file format 18
3.2 Bundle Launcher package structure . 27

5.1 Native Image agent bundle output directory 37
5.2 Updated Native Image Bundles format 37

44 LIST OF FIGURES

45

Listings

2.1 Install the Native Image tool with the GraalVM Updater tool 4
2.2 Native Image tool help text . 5
2.3 Native Image tool extra help text . 5
2.4 Pull a native-image-community container image [8] 10
2.5 native-image-community Dockerfile based on Oracle Linux 8 and Java 20

for GraalVM 23.0.0 [25] . 10
2.6 native-image-community Dockerfile with a musl libc toolchain based on

Oracle Linux 8 and Java 20 for GraalVM 23.0.0 [26] 11
2.7 Command lines for building images and running containers 14
2.8 Execute a JAR file . 15
3.1 Parsing extended Native Image Bundles options 19
3.2 Check virtualization tool availablility . 20
3.3 Find a supported virtualization tool . 21
3.4 Build container image . 22
3.5 Create command for building the native image inside a container 23
3.6 Native Image Bundles default Dockerfile 25
3.7 Extension of the default Dockerfile for building statically linked native images 25
3.8 Fetch the Bundle Launcher from resources and copy it into a native image

bundle . 28
3.9 Manifest file for executable native image bundles 29
3.10 Abort execution of shared library bundles 30
5.1 Switch to rootless Docker with dockerd-rootless-setuptool.sh 33
5.2 Command-line interface extensions for Native Image Bundles 34
5.3 Update the bundled Dockerfile . 35
5.4 Command-line interface extensions for the Bundle Launcher 36
5.5 Use verbose output for the Bundle Launcher and the bundled application 38
5.6 Bundle Launcher help text . 38
5.7 Use an existing old bundle to create a bundle that supports the new features 39

46 LISTINGS

47

Bibliography

[1] “Assisted Configuration with Tracing Agent.” [Online]. Avail-
able: https://docs.oracle.com/en/graalvm/enterprise/21/docs/reference-manual/
native-image/Agent/#assisted-configuration-with-tracing-agent

[2] “Docker overview.” [Online]. Available: https://docs.docker.com/get-started/
overview/

[3] “Docker rootless setup tool.” [Online]. Available: https://docs.docker.com/engine/
security/rootless/

[4] “Docker build command line reference.” [Online]. Available: https://docs.docker.
com/engine/reference/commandline/build/

[5] “Docker run command line reference.” [Online]. Available: https://docs.docker.com/
engine/reference/commandline/run/

[6] “GraalVM.” [Online]. Available: https://www.graalvm.org/

[7] “GraalVM Architecture Overview.” [Online]. Available: https://www.graalvm.org/
latest/docs/introduction/

[8] “GraalVM Community Edition Container Images.” [Online]. Available: https:
//www.graalvm.org/latest/docs/getting-started/container-images/

[9] “GraalVM GitHub Container Registry.” [Online]. Available: https://github.com/
orgs/graalvm/packages

[10] “Graalvm github container repository.” [Online]. Available: https://github.com/
graalvm/container/tree/master

[11] “GraalVM Updater.” [Online]. Available: https://www.graalvm.org/latest/
reference-manual/graalvm-updater/

[12] “JAR File Specification.” [Online]. Available: https://docs.oracle.com/en/java/
javase/20/docs/specs/jar/jar.html

[13] “Java Command-Line Argument Files,” publisher: October2021. [On-
line]. Available: https://docs.oracle.com/en/java/javase/11/tools/java.html#
GUID-4856361B-8BFD-4964-AE84-121F5F6CF111

[14] “The Java® Virtual Machine Specification.” [Online]. Available: https:
//docs.oracle.com/javase/specs/jvms/se20/html/index.html

[15] “JSON.” [Online]. Available: https://www.json.org/json-en.html

https://docs.oracle.com/en/graalvm/enterprise/21/docs/reference-manual/native-image/Agent/#assisted-configuration-with-tracing-agent
https://docs.oracle.com/en/graalvm/enterprise/21/docs/reference-manual/native-image/Agent/#assisted-configuration-with-tracing-agent
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/
https://www.graalvm.org/
https://www.graalvm.org/latest/docs/introduction/
https://www.graalvm.org/latest/docs/introduction/
https://www.graalvm.org/latest/docs/getting-started/container-images/
https://www.graalvm.org/latest/docs/getting-started/container-images/
https://github.com/orgs/graalvm/packages
https://github.com/orgs/graalvm/packages
https://github.com/graalvm/container/tree/master
https://github.com/graalvm/container/tree/master
https://www.graalvm.org/latest/reference-manual/graalvm-updater/
https://www.graalvm.org/latest/reference-manual/graalvm-updater/
https://docs.oracle.com/en/java/javase/20/docs/specs/jar/jar.html
https://docs.oracle.com/en/java/javase/20/docs/specs/jar/jar.html
https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-4856361B-8BFD-4964-AE84-121F5F6CF111
https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-4856361B-8BFD-4964-AE84-121F5F6CF111
https://docs.oracle.com/javase/specs/jvms/se20/html/index.html
https://docs.oracle.com/javase/specs/jvms/se20/html/index.html
https://www.json.org/json-en.html

48 BIBLIOGRAPHY

[16] “JVM Tool Interface 1.2.3.” [Online]. Available: https://docs.oracle.com/javase/8/
docs/platform/jvmti/jvmti.html

[17] “Micronaut Guides | Micronaut Guides | Micronaut Framework.” [Online]. Available:
https://guides.micronaut.io/latest/index.html

[18] “musl libc.” [Online]. Available: https://musl.libc.org/

[19] “Native Image.” [Online]. Available: https://www.graalvm.org/latest/
reference-manual/native-image/

[20] “Native Image Build Options.” [Online]. Available: https://www.graalvm.org/latest/
reference-manual/native-image/overview/BuildOptions/

[21] “Native Image Bundles.” [Online]. Available: https://www.graalvm.org/latest/
reference-manual/native-image/overview/Bundles/

[22] “Native Image for graalvm 22.” [Online]. Available: https://www.graalvm.org/22.3/
reference-manual/native-image/

[23] “OpenJDK, HotSpot Runtime Overview.” [Online]. Available: https://openjdk.org/
groups/hotspot/docs/RuntimeOverview.html

[24] “Oracle GraalVM Release Calendar.” [Online]. Available: https://docs.oracle.com/
en/graalvm/enterprise/21/docs/release-calendar/#oracle-graalvm-release-calendar

[25] “Oracle linux 8, graalvm native-image dockerfile, java 20.” [Online].
Available: https://github.com/graalvm/container/blob/master/rpm-compact/
native-image-community/Dockerfile.ol8-java20

[26] “Oracle linux 8, graalvm native-image dockerfile, java 20 muslib.” [On-
line]. Available: https://github.com/graalvm/container/blob/master/rpm-compact/
native-image-community/Dockerfile.ol8-java20-muslib

[27] “Podman Introduction.” [Online]. Available: https://docs.podman.io/en/latest/
Introduction.html

[28] “Static and Mostly Static Images.” [Online]. Available: https://www.graalvm.org/
latest/reference-manual/native-image/StaticImages/

[29] “Substrate VM.” [Online]. Available: https://docs.oracle.com/en/graalvm/enterprise/
20/docs/reference-manual/native-image/SubstrateVM/#the-substrate-vm-project

[30] “Tracing Agent.” [Online]. Available: https://www.graalvm.org/latest/
reference-manual/native-image/metadata/AutomaticMetadataCollection/

[31] “Truffle Language Implementation Framework.” [Online]. Available: https://www.
graalvm.org/latest/graalvm-as-a-platform/language-implementation-framework/

[32] “Spring PetClinic Sample Application,” Sep. 2023, original-date: 2013-
01-09T09:05:18Z. [Online]. Available: https://github.com/spring-projects/
spring-petclinic

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://guides.micronaut.io/latest/index.html
https://musl.libc.org/
https://www.graalvm.org/latest/reference-manual/native-image/
https://www.graalvm.org/latest/reference-manual/native-image/
https://www.graalvm.org/latest/reference-manual/native-image/overview/BuildOptions/
https://www.graalvm.org/latest/reference-manual/native-image/overview/BuildOptions/
https://www.graalvm.org/latest/reference-manual/native-image/overview/Bundles/
https://www.graalvm.org/latest/reference-manual/native-image/overview/Bundles/
https://www.graalvm.org/22.3/reference-manual/native-image/
https://www.graalvm.org/22.3/reference-manual/native-image/
https://openjdk.org/groups/hotspot/docs/RuntimeOverview.html
https://openjdk.org/groups/hotspot/docs/RuntimeOverview.html
https://docs.oracle.com/en/graalvm/enterprise/21/docs/release-calendar/#oracle-graalvm-release-calendar
https://docs.oracle.com/en/graalvm/enterprise/21/docs/release-calendar/#oracle-graalvm-release-calendar
https://github.com/graalvm/container/blob/master/rpm-compact/native-image-community/Dockerfile.ol8-java20
https://github.com/graalvm/container/blob/master/rpm-compact/native-image-community/Dockerfile.ol8-java20
https://github.com/graalvm/container/blob/master/rpm-compact/native-image-community/Dockerfile.ol8-java20-muslib
https://github.com/graalvm/container/blob/master/rpm-compact/native-image-community/Dockerfile.ol8-java20-muslib
https://docs.podman.io/en/latest/Introduction.html
https://docs.podman.io/en/latest/Introduction.html
https://www.graalvm.org/latest/reference-manual/native-image/StaticImages/
https://www.graalvm.org/latest/reference-manual/native-image/StaticImages/
https://docs.oracle.com/en/graalvm/enterprise/20/docs/reference-manual/native-image/SubstrateVM/#the-substrate-vm-project
https://docs.oracle.com/en/graalvm/enterprise/20/docs/reference-manual/native-image/SubstrateVM/#the-substrate-vm-project
https://www.graalvm.org/latest/reference-manual/native-image/metadata/AutomaticMetadataCollection/
https://www.graalvm.org/latest/reference-manual/native-image/metadata/AutomaticMetadataCollection/
https://www.graalvm.org/latest/graalvm-as-a-platform/language-implementation-framework/
https://www.graalvm.org/latest/graalvm-as-a-platform/language-implementation-framework/
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic

	Introduction
	Background
	GraalVM
	Native Image
	Native Image Build
	Native Image Bundles
	Native Image Agent
	GraalVM Container Images

	Virtualization Tools
	JAR File Specification
	Problem Statement

	Implementation
	Native Image Bundles Extensions
	Virtualized Native Image Build
	Parse Extended Native Image Bundles Options
	Check for Virtualization Tool
	Build Container Image
	Run Container for Native Image Build

	Capture Virtualization Related Information
	Virtualization Tool
	Dockerfile

	Bundle Launcher
	Bundle Launcher Package
	Inject Bundle Launcher into Native Image Bundles
	Execute Native Image Bundles

	Limitations
	Virtualization Tool
	Operating System

	Usage and Evaluation
	Virtualized Image Build
	Command-Line Interface
	Updating Virtualization Information in Native Image Bundles

	Execute Native Image Bundles
	Command-Line Interface
	Attach Native Image Agent
	Virtualized Bundle Execution
	Other Options

	Backward Compatibility
	Evaluation

	Conclusion

