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Abstract 

Understanding the memory behavior of intricate applications, together with the task 
of detecting hard-to-find memory leaks, is tied to the role of memory analysts and ex-
perienced developers. In their inspiring paper, Weninger et al. [10] presented Memory 
Cities, a novice-friendly tool that visualizes an application’s heap memory evolution 
over time using the software city metaphor. In a memory city, heap objects (that were 
previously grouped by properties such as package and type) are represented as buildings 
arranged in districts. The size of a building portrays the object/byte count of its respec-
tive heap object group. Constantly evolving buildings reveal suspicious growth in heap 
memory along with memory leaks. 

The visualization tool was developed in Unity. Unfortunately, this requires a Unity 
installation, or the manual download of Memory Cities, in order to run the visualization. 
In this work, we overcome these problems by introducing the online version of Memory 
Cities, a web application accessible from any browser without any download or instal-
lation needed. Using JavaScript and the 3D library Three.js, we supply all the features 
in the desktop application and extend the feature set to some degree. 

Kurzfassung 

Verständnis für das Verhalten des Speichers von komplexen Anwendungen sowie 
die Erkennung von schwer aufzuspürenden Speicherlecks sind an die Rolle von 
Speicheranalysten und erfahrenen Entwicklern gebunden. In ihrem inspirierenden 
Paper stellten Weninger et al. [10] Memory Cities vor, ein benutzerfreundliches 
Werkzeug, dass die zeitliche Entwicklung des Heap-Speichers einer Anwendung mittels 
der Software-Stadt-Metapher visualisiert. In einer Speicherstadt werden Heap-Objekte 
(die zuvor nach Eigenschaften wie Paket und Typ gruppiert wurden) als Gebäude 
dargestellt, die in Bezirken angeordnet sind. Die Größe eines Gebäudes stellt die 
Anzahl an Objekten/Bytes der jeweiligen Heap-Objektgruppe dar. Ständig sich 
entwickelnde Gebäude geben verdächtiges Wachstum des Heap-Speichers sowie 
Speicherlecks preis. 

Das Visualisierungstool wurde in Unity entwickelt. Leider erfordert dies die 
Installation von Unity oder den manuellen Download von Memory Cities, um die 
Visualisierung auszuführen. In dieser Arbeit überwinden wir diese Probleme, indem 
wir die Online-Version von Memory Cities entwickeln, eine Web-Anwendung, die von 
jedem Browser aus verfügbar ist, ohne Download oder Installation. Mithilfe von 
JavaScript und der 3D-Bibliothek Three.js stellen wir alle Funktionen der Desktop-
Anwendung bereit und erweitern das Funktionsspektrum in gewissem Maße. 
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1 Introduction 

The most efficient way of storing local variables and primitives such as integers and 
booleans is to put them on the local stack memory. Local variables are allocated auto-
matically when a method is called and deallocated automatically when the method ex-
its. In contrast, we use the heap memory (also known as dynamic memory) to store 
larger and more complex (user-defined) objects. Furthermore, the programmer explic-
itly requests allocating that space, for instance, by using the new operator in Java. In 
some programming languages (notably C and C++), the developer explicitly needs to 
request an object in heap memory to be deallocated. Dropping all references to a 
memory location without deallocating it is a significant source of errors in C/C++ and 
causes memory leaks.  

Modern programming languages such as Java or JavaScript (JS) release the devel-
opers from that task of freeing memory manually by using automatic garbage collec-
tion. The garbage collector (GC) determines which heap objects are no longer being 
used by examining the GC roots (e.g., static fields or thread-local variables) [9] and 
releases the memory allocated for them. Despite this, memory problems and anomalies 
such as memory leaks can arise even in garbage-collected languages. For example, a 
developer may forget to remove objects from their containing data structures. The gar-
bage collector cannot reclaim these objects, which will accumulate over time. 

Memory leaks can be identified by (1) finding suspicious objects with large owner-
ship, i.e., those objects that keep alive a lot of other objects and (2) searching for groups 
of objects that grow suspiciously over time. Memory monitoring tools such as Visu-
alVM1, Eclipse MAT2 or the Chrome DevTools heap profiler3 help users achieve this 
task of finding potential memory leaks. Unfortunately, many of these state-of-the-art 
tools lack a visualization method to emphasize the heap’s evolution over time (except 
for time-series charts).  

As a result, the authors in [10] presented Memory Cities, an approach to visualize 
the heap’s memory evolution using the software city metaphor. Such a city comprises 
buildings that represent heap object groups that are arranged in districts based on shared 
heap object properties such as type (e.g. String). As a monitored application progresses 
in time, its heap object groups will increase and shrink in size. As a consequence, build-
ings in Memory Cities can also change in dimensions.  

Currently, Memory Cities is a standalone application developed in Unity4, necessi-
tating Unity to be available or installing Memory Cities directly as a desktop applica-
tion. This bachelor thesis tackles this problem and aims to port the original Memory 
Cities tool to a web-based visualization tool that can be used within a browser without 
manual downloading or installation. To achieve this, we use JavaScript together with 

 
1  http://visualvm.github.io/ 
2  https://www.eclipse.org/mat/ 
3  https://developer.chrome.com/docs/devtools/memory-problems/ 
4  https://unity.com/ 
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Three.js5, a 3D library for the web. The main requirements of the new tool are as fol-
lows:  

• all features supported in the desktop application must also be available in the web 
tool (including Time Travel, color highlighting/opacity settings and reference vis-
ualization) (Section 3.4) (Section 3.5) 

• adding additional features such as tiling method (Section 3.3) and animations 
(Section 5.4) 

• clean code structure, as well as clean documentation (e.g., documented method 
headers), considering that the tool will advance in the future (Section 6) 

2 Background & Related Work 

The purpose of Memory Cities is to help out developers during the memory analysis 
process and in detecting suspiciously growing heap object groups. The tool takes ex-
isting techniques from the memory monitoring domain and combines them with the 
software city metaphor, resulting in a new category of software visualization tools.  

Hence, this section serves as an introduction to these domains. 

2.1 Memory Analysis 

The process of memory analysis usually starts with taking a snapshot (so-called heap 
dump) of the heap memory. A heap dump is a representation of all the objects that were 
in memory at a certain point in time. Secondly, numerous heap objects are grouped 
according to some criteria, such as type or call site, resulting in a memory tree. Lastly, 
memory profiling tools provide several views of the heap that show a user which objects 
account for memory usage and which code parts allocate space. For the most part, tools 
display a memory tree using the tree table view, similar to the one shown in Table 1. 

Table 1. A memory tree grouped by types and allocation sites represented in tree table view. 
Shallow size is the object size itself. Retained size of an object is its shallow size plus the shallow 
sizes of the objects that are accessible, directly or indirectly, only from this object. 

 Object Count Shallow Size Retained Size 
 Heap (root) 10,000 95 MB 345211 MB 
o type String 5,000 … … 

• allocated in substring() 2,000 … … 
• allocated in toString() 3,000 … … 

o type Integer 2,500 … … 
• allocated in valueOf() 2,200 … … 

…    

 
5  https://threejs.org/ 

https://threejs.org/
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Most tools also provide a feature that compares two snapshots and highlights the delta 
in freed memory and reference count between two points in time. They do this by cal-
culating the differences in the number of objects and displaying these discrepancies in 
a tree table. Although comparing two heap dumps may confirm the presence and cause 
of a memory leak, it does not reveal general trends in an application’s memory behav-
ior or heap object groups’ growth. As we will see in Section 2.3, Memory Cities ad-
dresses this problem, which is an uncommon and novel feature of most state-of-the-art 
tools. 

2.2 Software Cities in General 

Building knowledge of large-scale software systems is a tedious task. Advanced visu-
alization techniques such as the software city metaphor can be utilized to cope with this 
problem. As Wettel and Lanza describe in their paper [12], a software city typically 
depicts object-oriented software systems and their static artifacts, such as class hierar-
chies and packages. The authors developed a 3D visualization tool called CodeCity 
[13], in which buildings represent classes grouped into districts based on their packages. 
The number of methods in a class determines the height of buildings. The area a build-
ing occupies is proportional to the number of attributes inside a class. 

Inspired by the widespread use of the software city metaphor, Weninger et al. [10] 
applied this metaphor to the domain of memory monitoring. 

2.3 Original Memory Cities Tool 

Memory Cities’ goal is to visualize an application’s dynamic memory behavior over 
time to help support the task of memory leak detection. It maps a heap state to a 3D 
environment. In particular, the tool takes a memory tree (i.e., grouped sets of heap ob-
jects) as input and displays it as a 3D city visualization. Heap object groups are visual-
ized as buildings arranged in districts. All buildings correspond to leaf nodes in the 
memory tree, where a building’s area and height are proportional to the number of ob-
jects/bytes represented by the respective tree node. Therefore, districts are parent tree 
nodes of buildings or simply inner nodes of the memory tree.  

Memory cities visualize an application’s heap memory evolution over time to detect 
trends in the growth of conspicuous heap object groups. Multiple memory trees serve 
as an input for the tool to accomplish this task. Every single memory tree represents the 
memory at one point in time. Users can then update the city over time, creating the 
immersive feeling of an evolving city, which makes it possible to search for strongly 
growing buildings. Hence, memory leaks may be discovered. 

Fig. 1 shows an exemplary memory city, where the type and the allocation site are 
the grouping criteria (so-called classifiers) for heap objects, i.e., here, buildings are a 
set of heap objects of the same type allocated in the same method. 

Having a well-defined JSON interface means that Memory Cities are independent 
of the memory monitoring tools that construct memory trees. Regardless of that, the 
authors of the original Memory Cities tool predominantly work with data imported from 
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AntTracks6. AntTracks has the distinct benefit of allowing users to choose multiple 
classifiers simultaneously, based on which the heap’s objects are grouped (e.g., type, 
allocation site, call site, address, package) [11]. 

 
Fig. 1. “An application’s heap visualized with memory cities shortly after startup (left) and 2 
minutes / 300 garbage collections later (right)” [10]. The tool further utilizes various visual at-
tributes for more manageable memory leak detection. It highlights strongly growing buildings 
using color, while making less suspicious buildings (semi-)transparent. 

Last but not least, the original Memory Cities tool is implemented as a standalone desk-
top application developed in Unity using C#. This fact covers only one of the differ-
ences compared to the new application, as we will see in Section 3.6. Nonetheless, both 
versions have significant similarities in their approach and theory, which are covered 
in the following sections. 

3 Online Memory Cities 

As the name suggests, the new tool is an online version, i.e., a web application, of the 
original one, with differences found during data processing (Section 3.2), in the ap-
pearance and used frameworks (Section 4). The general idea remains identical: visual-
ize a memory tree as a 3D city composed of buildings placed in districts. The following 
sections will discuss the steps for creating such a memory city (presented in Fig. 2). 

3.1 Approach 

The workflow of the newly developed online tool is inspired by the original tool. It 
also uses nearly the same input data. Yet, certain aspects, such as metadata calculation, 

 
6  http://mevss.jku.at/AntTracks 
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differ from the original implementation. This section will present the whole workflow 
of the new tool, from importing the data (i.e., multiple memory trees), processing it, up 
to visualizing it in 3D.  

 
Fig. 2. Example screenshot of the new Memory Cities tool taken in Google Chrome. (1) The 
Time Travel feature allows users to inspect the growth behavior of heap object groups. (2) Hov-
ering over a structure (i.e., either district or building) displays information about that structure. 
(3) Adjusting the settings changes the appearance of a memory city, which can help reveal 
memory leaks. 

The following list describes all the necessary steps (as shown in Fig. 3) toward creating 
a memory city: 

(1)  Once multiple heap dumps are taken and grouped according to a set of heap 
object properties, a folder containing all the resulting memory trees (as 
JSON files) can be selected and imported, respectively. 

(2)  Based on these memory trees, a JS object is created (called struc-
tureInfo), which maps the keys (names) of all possible tree nodes to 
their respective properties. These properties include the max value of a tree 
node, which stores the maximum number of objects/bytes a tree node rep-
resents at any point in time (i.e., the largest size a district or building will 
reach). Additionally, we calculate and store the absolute growth of each 
tree node, which is equal to the node’s growth between the first and the last 
memory tree. 

(3)  We use treemapping [2, 7] to generate the city’s general layout. First, we 
take the object/byte counts stored as max values in structureInfo to 
build a new tree (called layout tree) which serves as an input for a treemap 
algorithm. The layout tree is basically a memory tree where each node only 
has two properties; name and max object/byte count. By doing this, we 
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reserve an area for every building that will eventually be displayed in the 
city. Even if all heap object groups (buildings) reach their largest size at the 
same time, the generated layout guarantees that every building can fit into 
the city. 

(4)  Before we can render any new structures, i.e., districts or buildings, we first 
must get rid of the previously created city by disposing of all existing 3D 
objects. 

(5)  To display a memory city, we first process the inner nodes of our layout 
tree and render the districts as flat cuboids inside the 3D environment. 

(6)  To display buildings at a certain point in time, we first calculate each build-
ing’s base area at that point plus its height. Secondly, the buildings are cen-
tered in their layout spots reserved for them. Lastly, the corresponding cu-
boids get generated on top of the districts. 

(7)  We adjust the color and opacity attributes of buildings to emphasize 
strongly growing heap object groups. 

(8)  After successfully rendering a memory city, we update the user interface 
(embedded in HTML) to match the city’s current state. 

(9)  The Time Travel feature allows users to visualize the heap at different 
timestamps (one timestamp per imported memory tree). Stepping back and 
forth in time means executing the steps (6) to (8) and updating the visuali-
zation. Using the play button on the user interface (UI) triggers an auto-
matic animation of the city’s evolution. 

(10)  Applying specific settings (Fig. 2, (3)) (scaling mode, tiling method and 
child count), requires a new general city layout to be computed. In this case, 
the steps starting from (3) are performed again. 

(11)  There are more ways in which a user might interact with memory cities. To 
see information about a structure, one may hover over it or click it. Another 
feature is to show references between one and two (or more) buildings. This 
feature is inspired by the Dominators View7 available in most memory pro-
filing tools (or used in browsers such as Chrome and Firefox). It helps to 
identify heap object groups that cause other buildings to grow and those 
that grow because their objects are kept alive by others through references. 

 
7  https://firefox-source-docs.mozilla.org/devtools-user/memory/dominators_view/index.html 
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Fig. 3. An overview of the entire memory cities approach. The main difference compared to the 
original tool lies within preprocessing, specifically, metadata calculation. This comes from the 
fact that the new tool does not use meta trees such as max tree and growth tree [10], but rather a 
JS object for mapping these properties to heap object groups. 

In the following sections, we explain the separate steps in more detail. These sections 
focus on concepts; for implementation details, see Section 5. 
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3.2 Data 

This section will answer the following two questions in more detail: What data do we 
need to be a fully functional memory city? How is this data processed in order to build 
a treemap? 

Fig. 4 presents the major steps in processing input data (set of memory trees) based 
on which memory cities are created. The following list explains each one of them in 
more detail: 

(1)  In general, a software city is built upon tree data. Each tree node has to hold 
at least two properties: a unique key for labelling and identification pur-
poses and one value based on which the city gets laid out. In the case of 
memory cities, each tree node represents a group of heap objects which 
share common properties (classifiers) like type or call site. Each node or 
group is quantified by its object count or by counting the number of bytes 
the respective objects take up in a heap. Furthermore, as the goal is to vis-
ualize the heap’s evolution over time, memory cities load a set of memory 
trees instead of only one. Not only does each tree represent the heap state 
at a garbage collection point, but it also possesses a timestamp to ensure 
correct ordering [10]. To summarize, the Memory Cities tool expects the 
following data (format) inside a JSON file: 

• a classifiers array containing grouping criteria information (e.g. 
[{“name”: “Type”, “id”: 0}, {“name”: “Alloca-
tion Site”, “id”: 1}]) 

• the time at which the snapshot of the heap was taken 
• the root node of this memory tree, where each tree node contains: 
 a key/name to display (e.g. “methodY()”) 
 a fullKey array containing all the keys from the root node to the 

current node (e.g. [“Heap”, “TypeX”, “methodY()”]) 
 a unique fullKeyAsString to identify the heap object group (e.g. 
“Heap#TypeX#methodY()”) 

 a classifierId to identify the grouping criteria of the heap object 
group 

 objects value 
 bytes value 
 a children array (non-existent for leaf nodes/buildings) 

(2)  To build a city, we first need a map or a layout which tells us where to 
position our districts and buildings. Before computing the layout using tree-
mapping, we first have to determine and store the largest size a structure 
may reach (i.e., out of all memory trees, the most significant object/byte 
count for each node). In the case of buildings, we are also interested in 
growth information (i.e., the difference between the first and last ob-
ject/byte count for each node; absG). All this information about a structure 
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gets stored in a separate JS object called structureInfo (among other 
properties, see Section 5.1). 

(3)  A treemapping algorithm expects a tree data structure, where each node has 
a name and value property (the so-called layout tree; or hierarchy as stated 
in Section 5.2). In fact, this tree is a simplified memory tree, where the only 
two values inside a node are the fullKeyAsString of the heap object group 
and the max object/byte count stored in structureInfo. 

(4)  An algorithm returns the final layout of our city, including the coordinates 
of each rectangle which corresponds to a node. 

(5)  In the last step of data processing, we save the coordinates (x0, x1, y0, y1) 
of the base area for each building in the structureInfo object. 

 
Fig. 4. An overview of the data processing pipeline. We use treemapping to create the general 

city layout. 

3.3 Layout 

This section shows how we can use various treemapping algorithms in order to lay out 
a memory city. Additionally, we present techniques that help achieve a stable and (if 
required) less complex layout. 
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Single Tree. Introduced by Shneiderman and Johnson [2, 7], a treemap recursively par-
titions space into rectangles based on hierarchical tree-structured data. A rectangle 
represents each node in the (memory) tree, and the rectangles of child nodes are placed 
within the rectangles for the parent nodes (i.e., so-called nested treemap). One of the 
tree node’s values determines the size of its rectangle. In the case of memory cities, this 
is either the object count or byte count value. Instead of using the value directly, a user 
can apply three scaling modes (as shown in Fig. 5) to control the ratio between the 
value and the building size.  

 
Fig. 5. Different mapping functions applied to each node’s object/byte count result in distinct 

city layouts : sqrt (left), linear (middle) and quadratic (right). 

To create a treemap, we call a treemap layout function, which expects the parameters: 
(1) the root node of a tree (2) the size of the rectangle, which represents the root node 
(3) a recursive tiling algorithm. The alignment, ordering and aspect ratio of rectangles 
and the ability to preserve stability when there are changes in underlying data vary 
between tiling algorithms [6]. Fig. 6 presents all five tiling methods available in the 
new Memory Cities tool.  
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Fig. 6. A memory tree represented with different tiling methods applied during treemapping: 

(1) squarify, (2) binary, (3) slice, (4) dice, (5) slice & dice. 

Ideally, a treemapping algorithm tries to satisfy the criteria of a small aspect ratio (close 
to one) as it is a metric on how accurate the user can interpret the areas of the rectangles 
in the treemap [8]. Therefore, the squarified treemap algorithm by Bruls et al. [1] seems 
to be the best choice, as it seeks to produce rectangles as approximate squares (aspect 
ratio of 1). Nevertheless, Kong et al. [3] argue that squares should be avoided in 
treemaps. Thus, we use the squarified treemap algorithm with a desired aspect ratio of 
the golden ratio Ф [5] as the default tiling method. This hybrid creates relatively real-
istic and appealing cities. 

Lastly, we use the resulting layout to render 3D objects and build a city visualization 
with inner nodes representing districts and leaf nodes depicted as buildings. 

Evolution Over Time. As already discussed in previous sections, Memory Cities load 
multiple trees to visualize the heap’s evolution over time to inspect the growth of heap 
object groups. Consequently, buildings in Memory Cities can increase and shrink in 
size. One might think that it is sufficient to run a treemapping algorithm each time we 
switch from one tree to another, but this is not the case.  

Nodes do not grow at the same rate. In fact, the object/byte count of a heap object 
group can increase or decrease drastically between two points in time. Besides, it is 
even possible for nodes to be totally missing during one memory tree because the GC 
collected all objects of a particular type. As a result, we would have a new arrangement 
of structures whenever the treemap has changed. Thus, we heavily rely on the stability 
criteria of tiling methods. It will most likely get tough to track buildings and determine 
if and which two buildings in different heap states represent the same tree node, making 
it hard to follow an application’s growth. 



16 

To overcome the problem of an unstable layout, we apply static position animation 
[4]. That way, each node (i.e., district or building) that might exist at some point gets 
its reserved space on the general layout. This reserved space is calculated based on each 
node’s max object/byte count, in other words, the largest possible area a structure might 
have during one heap state (i.e., in one of the many memory trees). Therefore, the input 
of any tiling algorithm is the layout tree presented in Section 3.2, which holds all the 
max values of all nodes. To visualize a heap state, we calculate the area of a building 
at this specific point in time and center it in the rectangle that has been reserved for it 
(Fig. 7).  

This general layout is computed once (a) when the memory city gets initialized (b) 
every time we switch the scaling mode or tiling method, and (c) during tree pruning, 
which we describe in the following section. 

 
Fig. 7. The general layout (left) acts as guidance on where to position buildings (right) during the 
heap’s evolution without the necessity of constantly computing a new layout when we step back 
and forth in time. 

Tree Pruning. Using the child count feature, users can prune the layout tree before it 
gets passed to a treemapping algorithm. By defining how many child nodes per parent 
node get visualized, we only reserve space for the N largest heap object groups (districts 
and buildings) contained in each inner node (districts).  

This feature helps to reduce the complexity of significantly broad trees. By dropping 
small object groups that are not of particular interest to a user (as seen in Fig. 8), we 
emphasize heap object groups that accumulate a considerable amount of objects/bytes 
over time, which might be the reason behind memory leaks. 
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Fig. 8. The same heap state getting restricted in the number of child nodes per parent: 100 (left), 
50 (middle) and 20 (right, default setting). For large child count values, some buildings are either 
too small or not rendered at all (red circle), thus being of no interest. 

3.4 Metrics & Visual Mapping 

In various other software cities such as CodeCity [13], the visible properties of the city 
artifacts depict a set of chosen software metrics. This section discusses the visual at-
tributes of memory cities. 

Districts. Districts are flat structures with a fixed height that does not encode infor-
mation. Multiple levels of districts are stacked upon each other, hence visualizing the 
underlying memory tree, specifically the inner nodes. Therefore, the bottommost dis-
trict represents the entire heap. We use a linear color gradient from dark blue to light 
blue to ease the task of recognizing a district’s level. Lastly, the area of a district is 
determined by the number of objects or the number of bytes its tree node represents. 

Buildings. A leaf node inside a memory tree is visualized as a building. Not only is the 
building’s area based on the object/byte count of the respective node, but also other 
visual attributes transport information about metrics of interest to the user. 

Height. Compared to districts, the height of a building is not fixed, but rather 2 * sqrt(A) 
units, if we assume a surface area of A square units. Just like with the golden rectangles 
from Section 3.3, this results in somewhat realistic proportions of real-world buildings 
and cities. On the other hand, the downside comes from the fact that both visual attrib-
utes are based on the same metric, i.e., either object count or byte count.  

As already mentioned by the authors of the original Memory Cities tool [10], trying 
to separate the object count from the byte count so that one represents the height and 
the other represents the surface area size did not produce any added value to the visu-
alization. Actually, the contrary was the result, i.e., either extremely narrow buildings 
that are tall or overly wide buildings that are flat. Thus, the 3D city would suffer visually 
and be hard to interact with in certain situations (e.g., clicking on narrow buildings).  

Even though memory cities avoid having unrealistic buildings, it is common for 
other software cities, such as CodeCity [13], to contain weird-looking structures.  
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Color. To build a better perception of the memory evolution, i.e., the growth of heap 
object groups, memory cities encode the relative growth of buildings as color.  

The relative growth describes the difference in a node’s object/byte count between 
the first point in time (first memory tree) and the current point in time (current memory 
tree/currently shown heap state). In comparison, the absolute growth of a building is 
equal to a node’s growth between the first and the last memory tree and is stored in 
structureInfo. 

We use a linear color gradient ranging from white (negative/no growth) over orange 
(medium growth) to red (strong growth), which maps a value alpha in the range of zero 
to one to its respective color. To calculate alpha, we divide a building’s relative growth 
by the highest absolute growth of any building in the city, resulting in the formula (with 
fullKeyAsString being the unique identifier of a building):  

𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑐𝑐𝑎𝑎𝑎𝑎𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑓𝑓)− 𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑐𝑐(𝑓𝑓𝑐𝑐𝑎𝑎𝑎𝑎𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑓𝑓)

𝑚𝑚𝑎𝑎𝑚𝑚𝑓𝑓𝑚𝑚𝑓𝑓𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐ℎ()  

Opacity. We are primarily interested in heap object groups that grow substantially over 
time without dropping in size at the end (i.e., those with tremendous absolute growth), 
as those are most likely to be involved in a potential memory leak. For this reason, a 
user can decrease the opacity of less suspicious buildings by utilizing two sliders. The 
first one allows to select a number of N buildings that should stay solid/fully opaque, 
specifically, the first N buildings with the highest absolute growth. The second slider 
sets the reduced level of opaqueness for non-solid buildings (in percent). 

Fig. 9 pictures the visual benefits of having the color mode and opacity mode turned 
on. 
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Fig. 9. Six different setting combinations for the same city. The bottommost cities have color 
mode active. The four rightmost cities have transparency lowered to 50% and 0%, respectively, 
whereas the seven strongest growing buildings always stay fully opaque. 

3.5 Interaction 

This section demonstrates all the features and possibilities to interact with memory cit-
ies in order to help with the task of finding memory leaks. In Fig. 10, one can see 
numbers assigned to each feature, which are referenced in the following sections. 
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Fig. 10. Building that performs a jump animation right after selection (purple). A structure 

stays highlighted until the user clicks another one or an empty space. 

Navigation. There are several ways of navigating through the city (Fig. 10 (1)). The 
camera can (a) be moved using the left mouse button, (b) be tilted by pressing the right 
mouse button and moving the mouse up or down (though it cannot be tilted below the 
city), (c) be rotated by pressing the right mouse button and moving the mouse left or 
right and (d) zoom in and out using the mouse wheel. Furthermore, we set a damping 
factor (inertia) to give a sense of weight to the controls. Additionally, pressing the B 
key positions the camera above the city, resulting in a bird’s eye view (as seen in Fig. 
11). 
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Fig. 11. By pressing the keyboard shortcut B, we can transpose the camera into a bird’s eye 

view.  

Time Travel. Time Travel is the central feature of the Memory Cities tool, which is a 
unique component compared to other memory monitoring tools. Inspired by Time 
Travel in [14], this feature allows users to step back and forth through the history of an 
application’s heap memory. At the same time, the city updates itself to reflect the cur-
rently displayed heap state/memory tree.  

Between two timestamps, a node’s object/byte count value can increase or decrease, 
meaning that the size of the respective building also changes. To enhance the visual 
representation of this change in size, we animate a building’s shrinking or expansion 
process, i.e., animating the scaling of the 3D object (instead of instantly rendering the 
new-sized building). See Section 5.3 for further details. Note that districts are static and 
do not transform in size once they are created, since, although they are a group of heap 
objects, their primary purpose is to represent the underlying memory tree of the fi-
nal/uppermost heap object groups. 

Users can switch between the shown memory tree using buttons, a slider (Fig. 10 
(2)), or the keyboard’s left and right arrow keys. In addition to this, the play button 
starts an automatic animation of the heap’s evolution, meaning that every heap state is 
displayed for one second before rendering the next one automatically. It is also possible 
to pause and restart this procedure at any timestamp.  

Structure Properties. Each structure (i.e., district or building) holds three types of in-
formation: (a) the path from the root node of the memory tree to this structure’s node 
(e.g., Heap  Type: String  Allocation Site: toString()), (b) the number of objects 
allocated by this group, (c) the size of all objects in bytes. A user can access this infor-
mation by hovering over a structure to pop up a tooltip (Fig. 10 (3A)). Moreover, a 
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click on a structure highlights it, meaning that we display the information in the upper 
left corner (3B) and change the structure’s color to purple to point it further out. A 
structure stays selected even during Time Travel, making tracking its evolution easier. 
On top of that, clicking on a structure causes it to do a one-second jump animation (as 
demonstrated in Fig. 10 (3C)). Supposing the selected structure is a district, all its child 
structures perform the same animation (Section 5.4). 

Heap Object References. Ticking the Show Pointers checkbox (Fig. 10 (4A)) draws 
frustums8 (4B) between the currently highlighted building and others, revealing refer-
ences among these heap object groups. This novel feature helps differentiate between 
a memory leak’s symptoms and the root cause. Memory leaks usually happen when 
some objects (root cause) keep numerous references to other objects (symptoms), even 
after the latter is no longer needed and only takes up space in memory. 

Per memory tree, we also import one points-to map and one pointed-from map (also 
as JSON files). For each heap state and structure, respectively, they store how many 
objects the respective building references in other buildings (points-to) and by how 
many objects of the other buildings it is referenced by (pointed-from). 

The example in Fig. 12 gives a better understanding of the feature and its usefulness 
for memory analysts. (1) shows a memory city where heap objects are grouped by 
package (districts) and type (buildings). Two red buildings can be observed, indicating 
the highest absolute growth, meaning that the application accumulates lots of char[] 
and String objects over time. (2) Clicking on the char[] building shows that 
nearly all its instances are referenced by String objects (thick orange frustum). (3) 
Unsurprisingly, plenty of types contain strings. However, most references come from 
the Person type, which is selected in (4). The person’s building only has one out-
going (green) frustum to String, along with one (orange) frustum coming from 
LinkedList$Node, signifying that all persons are part of a linked list. In (5), one 
can notice a thin orange frustum from LinkedList$Node to LinkedList, hinting 
that the list head is kept alive by a LinkedList. 

After inspecting the references, we can conclude that the root cause of the memory 
leak is a linked list where multiple persons are added without being removed after-
wards. The vast amount of String and therefore char[] objects is only a conse-
quence and symptom of the leak.  

 
8  A 3-dimensional solid shape formed by cutting a cone or pyramid from the top with a plane 

parallel to its base. 
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Fig. 12. Heap object reference analysis. Incoming references are colored orange and stored in 
pointed-from maps; outgoing references are colored green and stored in points-to maps. These 
maps are saved as JSON files in separate folders and imported together with memory trees.  

Section 5.5 describes the creation and geometry of a frustum and how it is sized so that 
a frustum’s thickness can visually indicate uneven object amounts. 

3.6 Summary of Main Differences to Original Version 

The primary difference between the original and new tool is simultaneously the main 
goal of this bachelor thesis: porting the Memory Cities desktop application (built in 
Unity using C#) to a web-based visualization tool. The fundamental characteristics of 
the new tool are the same, as it is a requirement to support existing desktop application 
features. Nonetheless, the following list sums up more distinctions: 

• The new tool is implemented as a web app using HTML, CSS and JS, plus the 
library Three.js being at the core with regard to rendering 3D structures such as 
districts and buildings. 

• Any modern browser is capable of running online Memory Cities, i.e., no instal-
lation is needed when compared to applications developed in Unity. 

• Data processing varies heavily between the two versions. The authors of the orig-
inal tool implemented a tree-like data structure based on a Node class. Each 
Node stores its heap object group’s properties (e.g., name, level, byte count), in-
cluding a List<Node> attribute that references a node’s children. Moreover, 
even metadata gets stored in trees (max tree and growth tree). On the other hand, 
the online tool utilizes a single JavaScript object (structureInfo) that acts 
as a container for all properties and metadata regarding a heap object group. 
structureInfo maps a heap object group’s name to multiple properties in the 
form of key:value pairs. To access a structure’s metadata, one can use the syntax: 
structureInfo.districtName.max or structureInfo.build-
ingName.absG.  

• The possibility to adjust the tiling method used during treemapping, i.e., the lay-
out process, is a new feature. 
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• Animations to fluently transform from one timestamp to another and during struc-
ture selection are a nice-to-have extension. 

• Lastly, during the development of the online version, a considerable amount of 
time was put into a modern design and appearance of the user interface with the 
help of CSS and JS. 

4 Three.js 

To draw 3D on the web, one might use WebGL (Web Graphics Library), a very com-
plex and low-level system that only draws points, lines and triangles using JavaScript. 
Making use of WebGL requires a deep understanding of computer graphics, mathemat-
ics and geometry. It is a powerful library but with a steep learning curve. Three.js tack-
les these hurdles and provides built-in features for elements such as scenes, lighting, 
shadows, controls, textures and 3D math. Thus, it is a 3D library written in JavaScript 
with WebGL under the hood that allows developers to get 3D content on a webpage 
more easily. 

4.1 Fundamentals 

Since Three.js is at the core of the new Memory Cities tool, we introduce Three.js fun-
damentals throughout Section 4 before we explore the implementation details of the 
tool in Section 5. We also briefly mention the Three.js components, which are directly 
used in Memory Cities. 

Scene Graph. At the core of each Three.js app, there is a scene graph. The scene graph 
is a tree-like structure consisting of all the 3D structures (so-called Mesh, Group, or 
simply Object3D objects) and lights visible on the screen. An example of such a 
scene graph can be seen in Fig. 13 inside the blue rectangle (all parts in this figure will 
be explained in the subsequent sections). Because children are positioned and oriented 
relative to their parents, this hierarchical parent/child tree-like structure defines where 
objects are located and how they are oriented. For instance, an arm object may be a 
child of a human object; affecting the human’s location and orientation automatically 
alters the arm’s position in 3D space. 
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Fig. 13. Exemplary scene graph from the official Three.js documentation9. Geometries, materi-
als and textures are not part of the scene graph and can be shared across multiple Mesh objects. 

The Scene. At the root of each scene graph, there is a Scene object. It holds additional 
information such as background (color or texture) and fog. All instances of Object3D 
(including Mesh, Group, and Light objects, as Object3D is the base class for 
nearly every object) need to be added to the scene using the add() method. The 
Scene class also extends the Object3D class. 

Camera. A Camera specifies which portion of the scene is exposed to the screen later. 
There are numerous cameras in Three.js, the most commonly used ones being the Or-
thographicCamera and the PerspectiveCamera. A comparison of the two 
can be examined in Fig. 14.  

 
9  https://threejs.org/manual/#en/fundamentals 
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Fig. 14. Orthographic camera (left) and perspective camera (right). Rather than specifying a frus-
tum, an orthographic camera creates a cuboid (bottom left) and thus has no perspective (top left). 

For 2D games, one would use an orthographic camera as its missing depth information 
and perspective.  

In contrast, a perspective camera gives the feeling of a 3D space where things in the 
distance appear smaller than things up close (i.e., it mimics how humans see). It does 
this by defining a frustum (Fig. 15) based on four properties, which are also the param-
eters for the PerspectiveCamera constructor. Near and far set the distance be-
tween the camera and the front face and back face of its frustum, respectively. The field 
of view (fov, which is in degrees) limits how much of the scene is visible based on a 
full 360 degrees (i.e., it indirectly defines the height of the front and back of the frus-
tum). Lastly, we got the aspect ratio, which is based on the user’s browser window and 
calculated by dividing the window.innerWidth by the window.innerHeight. 
Anything outside this viewing frustum gets clipped (i.e., not rendered).  

Finally, in Fig. 13, notice how the camera is half in and half out of the scene graph. 
The reason for this is that cameras do not have to be in the scene graph in order to 
operate. However, if they are the child of some object, they will move and orient rela-
tive to their parent object (e.g., first-person games). 

Because we want to display a 3D city, we utilise a perspective camera. 

new THREE.PerspectiveCamera(
CAM_FOV, 
sizes.width / sizes.height, 
CAM_NEAR, CAM_FAR

);

new THREE.OrthographicCamera(
sizes.width / -2, 
sizes.width / 2, 
sizes.height / 2, 
sizes.height / -2, 
CAM_NEAR, CAM_FAR

);
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Fig. 15. Because of their viewing frustum, perspective cameras give information about depth. 

Renderer. The last and arguably the main fundamental object of every Three.js app is 
a Renderer, specifically, the WebGLRenderer in the case of Memory Cities (and 
most other use cases). We pass a Scene and a Camera to the render() method for 
the purpose of rendering (drawing) the portion of the 3D scene that is inside the frustum 
of the camera as a 2D image to a canvas. The canvas is an <canvas> element inside 
the app’s HTML file and corresponds to the domElement property of our renderer. 
Other valuable properties of renderers include antialias (boolean that says whether 
to perform antialiasing or not) and info (an object with statistical information about 
the graphics board memory and the rendering process, see Section 5.6 Fig. 22). 

4.2 Geometry + Material = Mesh 

In order to create 3D objects and structures, we create a Mesh. A Mesh symbolizes the 
combination of three things: 

• a geometry (the "skeleton" of our 3D object) 
• a material (the "skin" of an object) 
• the position, orientation, and scale of that object in the scene relative to its parent 

object. 

Geometry. A geometry defines the vertices and faces of a 3D shape. Three.js provides 
numerous predefined primitives, including BoxGeometry, ConeGeometry, Cyl-
inderGeometry, SphereGeometry, TorusGeometry, 
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TetrahedronGeometry, OctahedronGeometry, and many more. As shown in 
Fig. 16, each geometry has its own set of parameters needed to construct the shape (e.g., 
a BoxGeometry needs width, height and depth; a SphereGeometry requires its 
radius, the number of horizontal segments and the number of vertical segments). For 
the majority of 3D apps it is more likely to have 3D models made in 3D modelling 
programs such as Blender. 

 
Fig. 16. Subset of available geometries in Three.js. Every surface consists of vertices that form 

triangles. 

Material. A Material is responsible for an object’s appearance. It tries to simulate 
light sources in the scene whose light rays hit its object (so-called shading). Three.js 
comes with a wide variety of materials. Depending on the use case, developers must 
decide which material they apply to their meshes. To achieve more realistic graphics, 
one might use more sophisticated materials. On the other hand, those require more GPU 
power and might be unsuitable for mobile phones. Without going into too many details, 
here is a list of predefined materials (Fig. 17):  

• MeshBasicMaterial: unaffected by lights  
• MeshLambertMaterial: computes lighting only at the vertices  
• MeshPhongMaterial: computes lighting at every pixel; supports specular 

highlights (through the shininess parameter) 
• MeshToonMaterial: based on MeshPhongMaterial, but drops the 

smooth gradient effect 

new THREE.BoxGeometry(
10, 10, 10

);

path = new CustomSinCurve(5);
new THREE.TubeGeometry(

path, 20, 2, 8, false
);

new THREE.DodecahedronGeometry(5);new THREE.TorusGeometry(
5, 3, 16, 16

);

new THREE.SphereGeometry(
5, 32, 16

);

new THREE.ConeGeometry(
5, 10, 32

);
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Fig. 17. Materials define how items appear in the scene. More complex and realistic materials 

work with extra properties such as shininess and roughness. 

Additionally, there is the MeshStandardMaterial and the MeshPhysical-
Material, two physically based rendering (PBR) materials, which use much more 
complex math to come close to real-world looks. They equip properties such as 
metalness, roughness, and clearcoat. 

Texture. Materials not only allow us to add colors to our 3D object but also textures. 
Texture objects generally represent images either loaded from image files, generated 
from a canvas or rendered from another scene (e.g. MiniMaps in games: you could 
point a camera onto a scene, take the generated image and use it as a texture). To im-
plement a texture, we first need to create a TextureLoader object. Secondly, we 
call its load() method with the URL of an image, which gives us a Texture object 
as a result. Finally, we set the material’s map property to one or more textures. See 
Section 5.5 to see where and how textures are used in Memory Cities. It is worth men-
tioning that it is possible to wait for textures to load, which may be helpful for large 
amounts of data. 

Composition. In the last step of producing a 3D structure, we create a new Mesh object 
and pass geometry and material as parameters to the constructor. Further, one might 
adapt its position and rotation properties by each axis (e.g., during animation) 
to change the mesh’s location and orientation within the scene. The rotation is in radi-
ans, i.e., to work with degrees, one has to divide the degree value by 180 and then 
multiply by π. Finally, the complete Mesh object needs to be added to the scene. When 
it is part of a bigger structure, it gets added to a Group or Object3D object instead, 
just like in Fig. 13. 

4.3 Miscellaneous 

Light. Without appropriate lighting, a mesh and its material, respectively, would re-
main dark/black (except for MeshBasicMaterial). The next list gives an overview 
of all the different kinds of Light objects available in Three.js (note that every type 

new THREE.MeshBasicMaterial({ 
color: 0xff0000 

});

new THREE.MeshPhongMaterial({ 
color: 0xff0000 

});

new THREE.MeshLambertMaterial({ 
color: 0xff0000 

});

new THREE.MeshToonMaterial({ 
color: 0xff0000 

});
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of light has its own set of parameters, except for intensity, which can be set for all 
the classes):  

• AmbientLight: does not really accomplish the task of "real lighting" as there 
is no light source. Basically, it is used to brighten up the scene, making the darks 
not too dark. 

• HemisphereLight: works the same as AmbientLight and adds a parame-
ter for the sky and ground color - the sky color if the object’s surface is pointing 
up and the ground color if the object’s surface is pointing down. 

• DirectionalLight: will shine in the direction of its target (property of 
type Object3D), which needs to be added to the scene. There exists no "point" 
the light comes from, i.e., it is an infinite plane of light shooting out parallel rays 
of light (often used to mimic a sun). 

• PointLight: works like a light bulb. The light source shoots light in all direc-
tions from its location. There is also a distance and decay property to set the 
range and dim factor. In Memory Cities, a combination of three PointLight 
instances is positioned above the city. 

• SpotLight: works like a flashlight. The light source shoots light in the direction 
of its target and only shines inside a cone whose size can be adjusted with the 
angle property. The penumbra property regulates the light’s fade towards the 
edge of the cone. 

• RectAreaLight: a rectangular area of light such as a linear fluorescent light; 
works only with the two PBR materials 

To conclude, a scene can include various combinations of Light objects. Moreover, 
they can be not only added to a Scene but also meshes and Group instances (e.g., two 
SpotLights as headlights of a car object). For a visual representation of the numer-
ous light variations, visit the Three.js manual10. 

Controls. To navigate through Memory Cities, we implement MapControls, which 
allow us to orbit around a target (i.e., the city). We also set the maxPolarAngle to 
90 degrees, limiting how far one can orbit vertically, meaning that we cannot peek be-
low the memory city. 

5 Implementation 

This section gives insights into some implementation details of the new Memory Cities 
tool. It provides complementary information with regard to Section 4 and elaborates on 
previously mentioned topics, including project structure, treemapping, city rendering, 
structure animations, structure highlighting, textures, and disposing of 3D objects. 

 
10  https://threejs.org/manual/#en/lights 
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5.1 Code Base 

Besides index.html, which handles the import of needed JavaScript for treemapping, 
animations and Three.js and which incorporates the <canvas> element to which we 
render memory cities, the code base mainly exists of three files: 

• controls.js: In this file, we attach event handlers to elements on the right-hand 
side of the tool, i.e., buttons, sliders, checkboxes and dropdown menus that are 
part of the Time Travel and the settings category, respectively. Checkboxes and 
buttons listen to click events, sliders to input events and dropdown menus to 
change events. The sliders of the Time Travel and the child count feature actually 
listen to change events since we only want to trigger the respective methods after 
dragging the sliders to their desired position in order to avoid excessive render 
updates of the city (listening to input means that for every step during the slide 
we would generate a new city which is not particularly useful nor making changes 
between different timestamps/memory trees visually observable). The key presses 
which trigger bird’s eye and Time Travel are also defined here. All this interaction 
with the UI calls functions defined in the next two files.  

• visualizer.js: All code regarding Three.js and 3D visualization is covered in visu-
alizer.js. At the beginning of the file, we construct a Scene object, to which we 
add() three PointLight instances and three Group objects, one each for all 
the districts, buildings and frustums. This approach gives us better control of all 
the 3D structures (e.g., when trying to update the opacity of all buildings, we get 
all the meshes referenced in the children property (array) of the buildings’ 
Group and set the opacity property of a mesh’s respective material). Not only do 
we set up a renderer and camera, but also an event handler for window, which 
listens to resize events as a means to adapt the camera’s aspect ratio and renderer’s 
pixel ratio. Some other methods inside this file are explained between Section 5.3 
and Section 5.6. 

• logic.js: This file is the entry point of our web app. After selecting the folder that 
holds all the JSON files (memory trees), we wait for multiple FileReader ob-
jects to finish their asynchronous task of reading the input trees (as seen in Fig. 
18). This can be accomplished by wrapping each FileReader (one per JSON 
file) inside a Promise and having await Promise.all(<array of 
promises regarding file readers>) resolve when all of the input’s 
promises have been fulfilled. During that process, all input trees are stored in an 
array. Afterwards, the structureInfo object is built upon this array. struc-
tureInfo maps a node’s fullKeyAsString to its properties (e.g., classifiers, ob-
ject/byte count per timestamp, max/first/last object/byte count, level, children, co-
ordinates inside the city layout). With all that data, rebuildEntireCity() 
builds a new city from scratch (i.e., destroying a possible old city by executing 
resetScene() (part of visualizer.js), calling the treemap layout function (next 
section), generating city districts and calling updateUIAndCity()). The 
file’s updateUIAndCity() method is responsible for generating and updating 
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buildings during Time Travel, the color & opacity of buildings and the values and 
structure properties that are part of the UI. 

 
Fig. 18. The Promise object symbolizes the eventual completion (or failure) of an asynchro-

nous operation (reading memory trees as JSON files) and its resulting value. 

5.2 Layout 

With the help of D3.js11 (short for Data-Driven Documents), we are able to compute 
the rectangles of a treemap, i.e., the general city layout of a memory city. D3 is a Ja-
vaScript library for producing dynamic, interactive data visualizations for the web.  

In previous sections, we explained the concept of a layout tree (holding all the max 
object/byte counts stored in structureInfo) being passed to a treemap layout func-
tion. This is only partially true, as we will now explain the code snippet from Fig. 19.  

• Firstly, we create the object layoutTreeForD3, which is a simplified memory 
tree where the only two properties of a node are the fullKeyAsString and 
(a) for inner nodes/districts an array called children (b) for leaf 

 
11  https://d3js.org/ 
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nodes/buildings the max value extracted from structureInfo. Why not 
take the max value of a heap object group represented as a district out of struc-
tureInfo? Because this value does NOT match the object/byte count on which 
a district’s area can be determined (but rather the maximum size of the underlying 
heap object group throughout all memory trees).  

• Secondly, we pass the layoutTreeForD3 to the d3.hierarchy() method 
and tell it where the child nodes are (children array). 

• We then call the sum() method on this hierarchy model which determines the 
area of the inner node’s rectangles (i.e., the space reserved of and for districts) by 
summing up all their children’s values, starting from the leaf nodes’ max values. 
This adds the value property to the inner nodes of the hierarchy model. 

• The sort() method orders our data by comparing two nodes’ values.  
• For the last step, we call the d3.treemap() function on this hierarchy and 

specify the tiling method, padding between rectangles and overall size of the map 
to generate the dimensions of our rectangles.  

 
Fig. 19. D3 supports several treemap tiling methods (Section 3.3). 

The dimensions (i.e., the location/base area of our districts and buildings) are stored in 
the resulting hierarchy object, from which we extract the properties x0, x1, y0, y1 and 
store them in structureInfo. 

5.3 Buildings 

generateCityBuildings() gets called each time a new memory tree/heap state 
gets displayed, i.e., during Time Travel. Inside the method, we iterate through all the 
leaf nodes of the currently shown memory tree. The sequence of events inside this loop 
is as follows:  

1. If the heap object group does not have a respective building, we create the 3D 
structure. The corresponding scene graph is depicted in Fig. 20. Firstly, we 
make a BoxGeometry (with a uniform edge length of 1, i.e., a cube) and a 
MeshPhongMaterial for them to merge to a Mesh. Because we want seea-
ble edges for each cuboid, we also create an EdgesGeometry and pass the 
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previously created BoxGeometry to the constructor. The resulting geometry 
object basically holds the pairs of vertices which form a cuboid’s wireframe and 
is given to a LineSegments instance (in addition to a LineBasicMate-
rial) that draws a series of lines between pairs of vertices. Lastly, the 
LineSegments object gets attached to the building’s Mesh, which on the 
contrary, is appended to a Group’s children array that holds all the buildings 
inside memory cities. 

2. On creation, a cuboid’s position(.x/.y/.z) inside the world of memory 
cities always corresponds to its center of mass, with each edge parallel to one of 
the axes. That is why we set the building’s position.x and position.z 
to half of the width and depth of the layout’s reserved rectangle, i.e., x0 + (x1 - 
x0) and y0 + (y1 - y0), respectively. That is how buildings are centered in the 
layout spots reserved for them. For clarity, it is worth mentioning that D3.js 
works in 2D and not 3D like Three.js. Hence, D3’s y-axis is congruent with the 
z-axis inside the Three.js space. 

3. The base area’s size is based on the layout spot reserved for the building (i.e., 
max area; x * y) and the current object/byte count, resulting in the following 
formula: 

 𝑐𝑐𝑐𝑐𝑚𝑚𝑓𝑓𝑐𝑐𝑐𝑐𝑎𝑎 = (𝑚𝑚1 −  𝑚𝑚0) ∗  (𝑓𝑓1 −  𝑓𝑓0) ∗  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑓𝑓)

max(𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑓𝑓)  

Mathematical relations lead to the building’s width w, depth d and height h. 
4. Having a cube/BoxGeometry with a length of 1 is beneficial, as we can now 

set the scale.x, scale.y and scale.z of our Mesh to w, h and d. Not 
only is it not possible to reshape a geometry after creation, but we can also reuse 
a building and scale it each time we switch the displayed memory tree (during 
Time Travel), with the edges/line segments being rescaled automatically too. 
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Fig. 20. A building’s Mesh is assembled with three components (right), resulting in the left 

scene graph. 

Districts are built the same way, with the only differences being that their height is 
always one, and they are static (no rescaling). 

5.4 Animations 

A heap object group varies in object/byte count through several snapshots/memory 
trees, embodied via shrinking and expanding buildings. This rescaling of buildings is 
further elevated with the help of the GreenSock Animation Platform (GSAP).  
GSAP12 is a powerful JavaScript library that enables developers to create robust time-
line-based animations. During a building’s construction, we append a Timeline13 
property to its Mesh object. A Timeline is a powerful sequencing tool that acts as a 
container for Tween14 instances. A Tween is that part which performs the animations. 
It expects a target (the desired object to be animated, e.g., CSS properties, SVG), a 
duration, and any numeric object properties you want to animate. When the Tween’s 
playhead moves to a new position, it figures out what the property values should be at 
that point and applies them accordingly. 
In the if-statement from Fig. 21, one can see four Tweens being added to() the Time-
line tl of the building if it needs to expand (higher object/byte count compared to the 
previous memory tree). First, in 0.4 seconds, the 3D structure rises to its new posi-
tion.y, which is half its new height (h / 2) plus some offset for underneath districts. 

 
12  https://greensock.com/gsap/ 
13  https://greensock.com/docs/v3/GSAP/Timeline 
14  https://greensock.com/docs/v3/GSAP/Tween 



36 

Afterwards, it takes the mesh 0.2 seconds to expand along each axis by setting the scale 
property to the new width w, depth d and height h. 
When the object/byte count decreases, the order of Tweens switches, i.e., the building 
shrinks and then sinks. 

 
Fig. 21. Easing adapts the animation’s timing, changing its behavior and nature, respectively 
(e.g., Expo.easeOut: Tween starts fast and ends gradually/slow). “<” puts the animation at 
the start of the prior animation, meaning that they trigger at the same instance. 

As mentioned in Structure Properties, clicking on a structure adds two Tweens, plac-
ing the mesh’s position.y higher, then lower, and therefore letting the structure(s) 
jump. 

5.5 Heap Object References & Frustums 

Two types of geometries are used in Memory Cities: BoxGeometry for districts and 
buildings and CylinderGeometry for frustums representing heap object references 
between two buildings (Heap Object References). This section covers these frustums 
in more detail.  
The thickness of the CylinderGeometry (placed between the roofs of the two 
buildings) depends on the bottom and top radius. Assume building A objects reference 
building B objects. The formula for calculating the start radius (from roof A) then looks 
as follows:  

𝑐𝑐𝑟𝑟𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 =  𝑏𝑏𝑐𝑐𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓 .𝑓𝑓𝑐𝑐𝑠𝑠𝑓𝑓𝑐𝑐.𝑓𝑓
2

 ∗  0,175 ∗  𝑝𝑝𝑝𝑝𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑓𝑓[𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓 ][𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓]
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓)

 

In other words, the bottom radius is based on half the building’s height, some downsiz-
ing factor and the quotient obtained by dividing the number of objects that reference 
building B with the overall object count of building A. Differing radii transform the 
initial cylinder into a frustum. 
Part of the frustum’s Mesh is a green or orange MeshPhongMaterial that has an 
arrow Texture (.jpg file loaded with TextureLoader) applied to it to indicate the 
reference direction. The arrow is repeated across the surface horizontally (4x) and ver-
tically (floor(sqrt(geometryHeight))). The texture’s corresponding wrap parameter 
needs to be set to THREE.RepeatWrapping with the aim of achieving this desired 
tiling effect. 
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Before adding the mesh to the scene, we involve vector calculation to determine the 
mesh’s position and rotation matrix (quaternion15). 

5.6 Disposing 

It would be ironic to develop an online tool for the detection of memory leaks that 
causes memory leaks in the browser itself. That is why we implemented the method 
resetScene(), which is responsible for the disposal of unused Three.js entities, 
specifically, WebGL-related entities. When creating objects such as geometries, mate-
rials and textures, Three.js internally creates objects of the type WebGLBuffer, 
WebGLProgram and WebGLTexture. These are not automatically released for gar-
bage collection but instead after calling the dispose() method. 
As part of resetScene(), we go through the scene graph and check for every child 
if it has a geometry, material or texture attached to it. That is indeed the case for all the 
meshes, hence calling BufferGeometry.dispose(), Material.dispose() 
and Texture.dispose() (BufferGeometry is the base class of BoxGeome-
try and CylinderGeometry).  
Finally, we call Timeline.kill() on a mesh’s Timeline to force the completion of 
any animation and release it for garbage collection. 

The switch between scaling modes or tiling methods and the adjustment of the child 
count (Section 3.3) requires a new general layout and, consequently, the disposal of the 
currently shown memory city via execution of resetScene() before generating a 
new city. Fig. 22 shows the effect of calling resetScene() during runtime. 

 
15  https://threejs.org/docs/?q=mesh#api/en/math/Quaternion 
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Fig. 22. This screenshot is taken out of Google Chrome’s console. A renderer’s info object 
gives valuable insights into the rendering process and is helpful for debugging. It discloses the 
number of geometries, textures and more, that are inside a Three.js app’s heap memory. After 
calling resetScene(), we successfully delete deprecated city remains. 

6 Future Work 

This section covers thoughts and ideas on how Memory Cities can be extended to por-
tray a more comprehensive tool. 

6.1 Animations 

Currently, animations are mostly restricted to buildings and their scaling in size during 
Time Travel, which gives users better awareness of strongly growing heap object 
groups. Similarly, animating the sizing of frustums during Time Travel can be benefi-
cial. An innovative feature may be automatic memory leak detection. Looking at the 
example from Section Heap Object References Fig. 12, the frustums between build-
ings could be rendered (and animated) automatically one by one, showing the next larg-
est heap object reference (frustum) until a building is reached that has only outgoing 
frustums. This way, without user interaction, we can trace the memory leak from its 
symptoms back to the actual root cause. 
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Another use case for animations might be during the layout process, specifically 
when generating districts. For example, switching between scaling modes renders the 
underlying treemap of the city immediately. Contrastingly, animating the scaling of 
districts provides a smooth transition between alternative views of the same memory 
city. 

6.2 Metrics & Visual Mapping 

Implementing more visual attributes based on provided data and metrics can enrich 
memory cities’ effectiveness in general. At present, a building’s height is derived from 
its base area. Consequently, both visual attributes depict the same metric, either object 
count or byte count. Establishing a new metric on which a building’s height is based as 
well as splitting both metrics to represent unique optical traits is still for future research 
to decide. Regarding the second point, a possible solution may be the introduction of 
several textures and materials applied to the surface of a building. 

Printing information onto structures (such as in Fig. 23) can also yield instant value 
to the users. But, if text gets mapped onto buildings, one should pay attention not to 
build an excessive and unmanageable visualization but rather keep it clear and practical 
simultaneously.  

The novice-friendly nature of Memory Cities is a unique selling point regarding the 
(usually complicated) task of memory leak analysis. All of the more complex visual 
mappings should be part of an expert mode, as stated in the original paper Section X.B 
[10]. 

 
Fig. 23. Text on a 3D treemap (https://observablehq.com/@analyzer2004/3d-treemap). 

6.3 Generalization 

Memory cities are inspired by the software city metaphor, which also inspired other 
researchers, resulting in a collection of implementations for diverse application con-
texts. However, the basic concept is the same: presenting tree-structured data as a 3D 
city visualization. In the future, a more general and universally usable tool could be 
implemented, where users can provide parameters which map the input data to various 
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visual attributes of a city. Hence, this new tool cancels any restrictions on the applica-
tion context and acts as a one-for-all solution when aiming to present any tree-struc-
tured data as a city. 

7 Conclusion 

As part of this thesis, we ported the original Memory Cities [10] to JavaScript. First, 
we explained the concept of memory trees and how multiple heap dumps are collected 
and parsed, specifically how their heap objects are grouped based on shared properties 
such as type and allocation site. Not only does the resulting set of tree-structured input 
data get visualized as districts and buildings, but also the memory evolution over time 
can be animated. Using the Time Travel feature, memory leaks are exposed as strongly 
growing buildings and emphasized with color and opacity settings. Apart from that, 
displaying heap object references is a powerful way to detect the root cause of incor-
rectly managed memory allocations. 
Moreover, we address the differences between the desktop and the online application 
(e.g., how input data gets processed) and present a review on Three.js and how it is put 
to use in Memory Cities.  
Online Memory Cities aims to increase the easy accessibility for novice users even 
more but also assist experienced developers. To benefit the latter to a greater extent, we 
hope to see future updates for the Memory Cities web app and contributions regarding 
the ideas presented in the previous Section 6. 
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