
JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Author
Simon Reitinger

Submission
Institute of System
Software

Thesis Supervisor
Prof. Dr. Herbert Prähofer

February 2023

Reactive Markup - A
Functional UI Library in
Haskell

Bachelor’s Thesis

to confer the academic degree of

Bachelor of Science

in the Bachelor’s Program

Computer Science

https://jku.at/


Sworn Declaration

I hereby declare under oath that the submitted Bachelor’s Thesis has been written solely
by me without any third-party assistance, information other than provided sources or
aids have not been used and those used have been fully documented. Sources for literal,
paraphrased and cited quotes have been accurately credited.

The submitted document here present is identical to the electronically submitted text
document.

Linz, February 2023

Simon Reitinger

ii



Abstract

Creating graphical user interfaces with purely functional programming languages is a
challenge. Complex user interfaces tend to manage many different states and have to
handle many side effects. However, there exists a suitable design pattern for user inter-
faces with functional programming languages popular from libraries like React or Jetpack
Compose. In this pattern, functions are used to create a deterministic mapping between
the model state and the view state. Such a mapping can be expressed properly in the
purely functional language Haskell, where functions per definition have to return the
same output for the same input.

Reactive Markup is a library for designing user interfaces where Haskell functions map
the model state to the view state. In addition, Reactive Markup incorporates ideas from
Functional Reactive Programming (FRP), a programming paradigm dealing with state
changes happening over time. Together, FRP and view modelling functions are used in
order to create a changing graphical user interface in a purely functional programming
language. Finally, Reactive Markup has been designed to be polymorphic with regards
to the underlying platform, i.e., the same code can be used to create user interfaces for
different platforms.

iii



Kurzfassung

Die Erstellung grafischer Benutzeroberflächen mit rein funktionalen Programmierspra-
chen ist eine Herausforderung. Komplexe Benutzeroberflächen müssen verschiedene Zu-
stände verwalten und haben oft viele Seiteneffekte. Eingeführt in Bibliotheken wie React
oder Jetpack Compose, gibt es hierzu ein Entwurfsmuster, um Benutzeroberflächen mit
einem funktionalen Ansatz zu erstellen. Hierbei werden Funktionen verwendet, um eine
deterministische Abbildung vom Modellzustand zur grafischen Oberfläche herzustellen.
Dies lässt sich gut in der rein funktionalen Programmiersprache Haskell ausdrücken, wo
Funktionen die gleiche Ausgabe für die gleiche Eingabe zurückgeben müssen.

Reactive Markup ist eine Bibliothek zur Gestaltung von Benutzeroberflächen mit Haskell-
Funktionen, die den Modellzustand auf den Ansichtszustand abbilden. Darüber hinaus
enthält Reactive Markup Ideen aus Functional Reactive Programming (FRP), einem
Programmierparadigma, welches sich mit Zustandsänderungen über der Zeit beschäf-
tigt. FRP und Modell zu Benutzeroberfläche transformierende Funktionen werden ge-
meinsam verwendet, um eine sich verändernde grafische Benutzeroberfläche in einer rein
funktionalen Programmiersprache zu beschreiben. Zusätzlich wurde Reactive Markup so
konzipiert, dass es in Bezug auf die verwendete Plattform polymorph ist, d.h., derselbe
Reactive Markup Code kann zur Erstellung von Benutzeroberflächen für verschiedene
Plattformen verwendet werden.

iv



Contents

Abstract iii

Kurzfassung iv

1 Introduction and Motivation 1

2 Comparison of Java Swing and Jetpack Compose 3
2.1 Structure of component code . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Uni-directional data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Stateless components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Mutation of components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Reacting to changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Change management of Jetpack Compose . . . . . . . . . . . . . . . . . . 10
2.8 Celsius/Fahrenheit converter with Jetpack Compose . . . . . . . . . . . . 12

3 Reactive Markup 15
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Reactive Markup DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Hello Reactive Markup . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Nested components . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Stateful components . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Dynamic values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 GUI Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.6 GUI events changing the model . . . . . . . . . . . . . . . . . . . . 25
3.2.7 Controlling the event flow . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.8 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.9 Cross-platform GUIs . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.10 Celsius/Fahrenheit converter . . . . . . . . . . . . . . . . . . . . . 31

3.3 Reactive Markup Implementation . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Render typeclass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 The Markup type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Summary and Conclusion 38

Bibliography 40

v



Chapter 1

Introduction and Motivation

Graphical user interfaces (GUIs) are inherently stateful, making it difficult to model them
with purely functional programming languages. However, there exists a design pattern
using functions to design user interfaces which is popular from libraries like React or
Jetpack Compose [5] [2]. The main idea of that design patern is that the view of an
application is defined deterministically by the application model. Given an instance of
the application state, it is possible to build the corresponding view. Such a mapping from
application state to view can be realised with side-effect free functions.

Figure 1.1: Relation of Model and View

Figure 1.1 illustrates the relation between the model and the view. The Model represents
the current application state and the View the corresponding graphical user interface.
The function f defines how to build the view based on the model. If events happen, for
example button clicks, the view cannot be updated directly. Instead they update only
the model. If the model changes, then the function f can be used again to compute the
new view.

Listing 1.1 illustrates how a user interface is defined in the popular web framework React
with normal JavaScript functions. It contains a component which greets the user [5]. The
function Greet receives the current application state, the user as input. The username
is used to create a personalized message and the view is returned as HTML.

Using functions for defining user interfaces is suitable for functional programming lan-
guages. Haskell is a purely functional programming language which does not permit

1



1 Introduction and Motivation 2

function Greet(user) {
return (
<span>
Hello {user.name}!

</span>
);

}

Listing 1.1: Greeting component with React

side-effects [4]. It uses an advanced static type system which supports algebraic data
types. The most compelling feature of Haskell is probably that it heavily encourages
the use of immutable data structures, making mutability the exception rather than the
default [4].

There exist already a few libraries in the Haskell ecosystem which follow the concept in
Figure 1.1. One of them is gi-gtk-declarative which uses the GTK framework [7] under
the hood. Another is monomer which is based on the OpenGL graphics framework [6].
Both of them use a diffing approach to apply changes: when the model changes and a new
view is computed, the old and the new view are compared and the old view is adapted
with the minimal set of changes to the new one.

Reactive Markup is a new framework for creating graphical user interfaces in a functional
way. In contrast to the previous libraries, Reactive Markup aims to allow for a more
fine-grained handling of model changes to avoid diffing. Additionally, Reactive Markup
tries to be backend agnostic so that the same code can be used for multiple platforms.

The thesis is structured as follows: Chapter 2 contains a comparison of Java Swing and
Jetpack Compose which elaborates on the idea of using functions for GUI applications.
This section is included to show the differences between imperative and functional user
interfaces. Section 3.1 and Section 3.2 explain some properties of Reactive Markup and
illustrate how to use the framework. Finally, Section 3.3 provides a short overview of
the internal workings of Reactive Markup. Finally, Chapter 4 concludes the work with a
summary and a discussion of open issues.



Chapter 2

Comparison of Java Swing and
Jetpack Compose

Java Swing is an example of a library facilitating an imperative approach to GUI pro-
gramming while Jetpack Compose is an example of a declarative framework. In the follow-
ing, Java Swing and Jetpack Compose are compared to work out the differences between
imperative and declarative GUI programming. Due to Jetpack Compose’s nature as a
declarative library, it provides a higher level of abstraction than Swing. Jetpack Compose
components are defined as functions from model to view. In contrast, Swing does have
less restrictions on how to organize code and components can be created in various ways.

Java Swing programs tend to be more verbose than Jetpack Compose programs since
Jetpack Compose hides more implementation details.

2.1 Structure of component code

Listing 2.1 illustrates a GUI program to horizontally align three labels in Swing. First,
a JPanel is created as a container for the labels. Next, JLabels are created with their
text content and immediately appended to the panel via the add method of JPanel. The
JPanel handles the positioning of the labels and per default uses a flow layout to align
them in a row.

Notice that the main way of interacting with GUI components in Swing is via references
to those components. It is necessary to first create the panel and then later modify its
children. With Jetpack Compose, it is possible to create the whole component as one
whole structure. Listing 2.2 depicts the same GUI in Jetpack Compose.

JPanel panel = new JPanel();

panel.add(new JLabel("Hello"));
panel.add(new JLabel("from");
panel.add(new JLabel("Swing"));

Listing 2.1: Components in Swing

3



2 Comparison of Java Swing and Jetpack Compose 4

Row {
Text("Hello")
Text("from")
Text("JetpackCompose")

}

Listing 2.2: Component in Jetpack Compose

The outer component is a Row, which will align its children in a horizontal manner. The
labels are created with the Text component. The Text components are given to the Row

as an argument, which adds the Text components as children to the Row.

In contrast to Java Swing, Jetpack Compose has no references. Parent-child relation-
ships between components are created by handing the children as an argument to the
parent. Additionally, it is not possible to later modify components, making components
immutable.

In the end, is it a trade-off between flexibility and simplicity. In Jetpack Compose, a view
component is fully determined by its properties and children at the definition site, not
allowing any changes to components in other parts of the application. Swing facilitates
explicit mutation of components, supporting more ways to manage components but also
increasing code complexity.

2.2 Uni-directional data flow

Jetpack Compose encourages uni-directional data flow. State can be passed down from
parents to children, however, children cannot directly influence the state of their par-
ents. Instead, children spawn events which the parent components handle. The parent
components decide how to modify their state based on the received events [1].

Figure 2.1: Unidirectional Data Flow

Figure 2.1 illustrates the typical data flow in a Jetpack Compose application. Each node
represents a component. It is common that components at the leaves deal with more spe-



2 Comparison of Java Swing and Jetpack Compose 5

@Composable
fun MyTextField(state: String, onChange: (String) -> Unit){
OutlinedTextField(

value = state,
onValueChange = onChange

)
}

Listing 2.3: Simple Text field with Jetpack Compose

class Model {
String state

}

public JTextfield myTextField(Model model){
JTextField textField = new JTextField(model.state);
textField.addActionListener(event -> { model.state = textField.getText()
});
return textField;

}

Listing 2.4: Simple Text field with Java Swing

cific state and events than components closer to the root. For example, a leaf component
might be a text field which only cares about its text content. Conversely, a root node
might hold the whole application state and coordinates many other components.

Listing 2.3 shows the function for creating a text field in Jetpack Compose. Components
in Jetpack Compose are defined as functions with a @Composable annotation. Needed
state as well as event handlers are given as an input parameter by the parent component
when the component is used. In this case, state corresponds to the content of the text
field and the callback onChange is used to handle user inputs. OutlinedTextField is a
Jetpack Compose component for text fields. Its value is set to state and onValueChange

to the function onChange. OutlinedTextField will take care of rendering the correct
text content and executing the onChange callback when the user tries to change the text
content.

State will often be managed by the parent of a component since children cannot update
the state of their parents. In this example, MyTextField may not change the text content
itself. That content is managed by its parent which will decide how to act when onChange

is called.

Swing does not enforce any restrictions on the data flow, so state may flow in both
directions. Listing 2.4 illustrates how data might flow in both directions in a Swing
application. myTextField is given the model as an input. The textField is initialised
with the current state of the model. ActionListeners for text fields trigger when the
Enter key is pressed. Therefore, when Enter is pressed, the state of the model is directly
updated. myTextField receives state via the model parameter and also modifies the given
state without any action from its parent.



2 Comparison of Java Swing and Jetpack Compose 6

JTextField textField = new JTextField("Text");

// get content after user updates the text
String content = textField.getText();

Listing 2.5: Reading a Java Swing textfield

JLabel label = new JLabel("Text");

// later in program execution
label.setText("New text");

Listing 2.6: Updating a Java Swing label

2.3 Stateless components

Jetpack Compose promotes the idea that the model should define the view in such a way
that the view fully depends on the model [2]. The view should not hold any state on its
own. For example, the component MyTextField shown previously in Listing 2.3 does not
contain any state.

The model for the text field is its text content. This text content is explicitly managed
by the application and not by the view. In contrast, Swing text fields manage their text
content on their own, which is illustrated in Listing 2.5. The content of textField is
managed by itself. When the user changes the text, it can be queried with the method
getText.

In Java Swing, components have internal state which can be read with functions like
getText from Listing 2.5. In Jetpack Compose, the state of components can not be
queried, i.e., there exists no equivalent function in Jetpack Compose to getText. While
components in Jetpack Compose may contain internal state, it remains entirely hidden
and cannot be accessed. This is a direct consequence of the uni-directional data flow
illustrated in Figure 2.1.

2.4 Mutation of components

Modifying the view is straightforward in a Swing application. As long as one holds the
reference to a GUI component, one can use its methods to update its state. Listing
2.6 shows that the content of the label can be set by using its setText method at any
point. In contrast, Jetpack Compose components are immutable and cannot be arbitrarily
modified. However, the state of Jetpack Compose depends on the state of the application
model. Instead of updating the components directly, the application state is modified
and the changes are propagated automatically to the components.

Listing 2.7 illustrates how to update the MyTextField component from Listing 2.3.
MyTextField needs the text content it should render and a callback to deal with text



2 Comparison of Java Swing and Jetpack Compose 7

@Composable
fun Application(){

var textContent by remember { mutableStateOf("") }
MyTextField(textContent, newText => { textContent = newText })

}

Listing 2.7: Updating Jetpack Compose Label

class Model {
int intValue = 0;

}

Listing 2.8: Model in Swing

input from the user. In order to define state which may change due to user input, Jet-
pack Compose exports mutableStateOf. In this example, mutableStateOf("") is used to
create a mutable string which is then passed to MyTextField as its text content. When
the user inputs new text, textContent is overwritten with that new text. The remember

function is needed to automatically propagate updates from textContent to MyTextField.

The Application component follows the pattern illustrated in Figure 1.1 where
textContent is the model, MyTextField is the view function and newText => {

textContent = newText } is used to update the model.

2.5 Model definition

Assume that the model is a single integer. Defining a model for use with a Swing appli-
cation is straightforward and in line with normal Java practices. The integer is simply
represented as an int field, as shown in Listing 2.8.

Defining a model for Jetpack Compose is more complicated. Each field of the model
must be wrapped within a MutableState. MutableState is a class from Jetpack Compose
which is needed to autmatically update the GUI on model changes. In Listing 2.9, the
intValue is wrapped with a MutableState which tracks the changes happening to the
wrapped value. In order for the MutableState to recognize changes, it needs to be directly
updated.

Listing 2.10 illustrates an incorrect use of MutableState. If the list within MutableState

is modified, then no changes are detected. In order to update todos, one would need to
create a new list and set todos directly. Instead of wrapping List within MutableState,
it is better to use a MutableList provided by Jetpack Compose. The MutableList shown
in Listing 2.11 can be treated like any other list and supports updates to its elements.

class Model {
val intValue: MutableState<Int> = mutableStateOf(0)

}

Listing 2.9: Model in Jetpack Compose



2 Comparison of Java Swing and Jetpack Compose 8

class Model {
val todos: MutableState<List<String>> =

mutableStateOf(listOf("Gardening", "Cleaning"))
}

Listing 2.10: Incorrect use of MutableState

class Model {
val todos: MutableList<String> = mutableListOf("Gardening","Cleaning")

}

Listing 2.11: Use MutableList for a list state

Contrary to Jetpack Compose, Swing does not impose any restrictions on model defini-
tion, therefore all kinds of classes may be used within the model. In Swing, the model
for todos can be done with a normal list as shown in Listing 2.12.

Dealing with more complex model states is not as simple in Jetpack Compose as in Swing
since the special container types provided by Jetpack Compose must be used. This may
be especially problematic if Jetpack Compose does not support the container that would
fit the current situation.

2.6 Reacting to changes

While Swing is a less rigid framework as Jetpack Compose and offers flexibility to the de-
veloper, it also means that more code is needed to do the same task. Swing does not have
any mechanism for automatically updating the GUI based on Model changes. Therefore,
adjusting the GUI to the model needs to be done by hand. One of the most common
techniques for synchronizing the model and the GUI is the event-listener pattern.

Listing 2.13 provides the code for a model which includes the capabilities for rec-
ognizing changes and reacting to them. GUI code can register listeners which up-
date the corresponding GUI element with the new value. In addition to intValue

, there exstis a field for listeners which is a list of IntValueChangeListeners. An
IntValueChangeListener is an interface that is called when the intValue is changed with
setIntValue. IntValueChangeListener can be added via addIntValueChangeListener.

With this mechanism in place, it is possible to create a GUI which will update when the
model changes. Listing 2.14 creates a GUI which shows the intValue from Listing 2.13
and increases it by one for each button click. The label is created with the initial value of
the model. Then, a callback is added via model.addIntValueChangeListener to update

class Model {
List<String> todos = List.of("Gardening", "Cleaning");

}

Listing 2.12: Normal lists as a model for Java Swing



2 Comparison of Java Swing and Jetpack Compose 9

class Model {
int intValue = 0;

private List<IntValueChangeListener> listeners = new ArrayList<
IntValueChangeListener>();

public int getIntValue(){
return intValue;

}

public setIntValue(int intValue){
this.intValue = intValue;
for (IntValueChangelistener listener : listeners){

listener.valueChanged(intValue);
}

}

public addIntValueChangeListener(IntValueChangeListener listener){
listeners.add(listener)

}

public static interface IntValueChangeListener extends EventListener {
public void valueChanged(int newIntValue);

}
}

Listing 2.13: Change management in Swing

public JPanel ModelValue(Model model){
JPanel panel = new JPanel();

JLabel label = new JLabel("IntValue: " + model.getIntValue());
model.addIntValueChangeListener(newInt ->

label.setText("IntValue: " + newInt)
);

JButton button = new JButton("Click me");
button.addActionListener(event ->

model.setIntValue(model.getIntValue() + 1)
);

panel.add(label);
panel.add(button);

return panel;
}

Listing 2.14: Reacting to changes in Swing



2 Comparison of Java Swing and Jetpack Compose 10

@Composable
fun ModelValue(model: Model){

let intValue by remember { model.intValue }
Column {

Text("IntValue: " + intValue)
Button(onClick = { intValue.value++ })

}
}

Listing 2.15: Reacting to changes in Jetpack Compose

@Composable
fun Counter(){

var counter by remember { mutableStateOf(0) }
Text("Couter at: " + counter)
Button(onClick = { counter++ }) {}

}

Listing 2.16: Simple Counter with Jetpack Compose

the label content when the intValue changes. The button executes model.setIntValue

with an increased value whenever it is clicked. Finally, both the label and the button

are added to a JPanel.

The same task can be achieved more easily in Jetpack Compose. The example from
Listing 2.9 is sufficient as the model. Since MutableState tracks changes already, it is not
necessary to write additional logic to synchronize model and GUI.

Listing 2.15 defines a Jetpack Compose GUI which is equivalent in functionality to the
Java Swing GUI in 2.14. First, remember is used to access the current state of the model.
Then, the Text and Button can use the intValue. Updating the GUI on model changes
with a callback like with model.addIntValueChangeListener is not required since Jetpack
Compose does this automatically.

2.7 Change management of Jetpack Compose

To synchronize the GUI in Swing, it was necessary to:

1. Provide an update function to apply the necessary changes as in Listing 2.14

2. Provide methods for detecting changes and acting on them as in Listing 2.13

To understand how Jetpack Compose components are updated, consider the following
component Counter. It comprises a mutable state starting at 0, Text component to render
the value of the mutable state and a button which increases the state by 1 on every click.

When executing component functions like Text, they are automatically added to the
current UI container without needing to add them manually as is the case for Swing
(cf. Section 2.1). To facilitate this functionality, Jetpack Compose uses a compiler plugin
which transforms all functions with a @Composable annotation, introducing additional



2 Comparison of Java Swing and Jetpack Compose 11

fun Counter(composer: Composer){
var counter by composer.remember { mutableStateOf(0) }
composer.add(Text("Couter at: " + counter))
composer.add(Button(onClick = { counter.value++ })) { Text("Click me") }

}

Listing 2.17: Introducing compiler transformations (pseudo code)

fun Counter(composer: Composer){
var counter by composer.remember { mutableStateOf(0) }
composer.add(

// Create Component
Text(),

// Update Component
{ label => if(composer.changed(counter)){

label.text = counter
}});

// Button never changes
composer.add(Button(onClick = { counter.value++ }))

}

Listing 2.18: Efficient Updates (pseudo code)

parameters and injecting the necessary machinery. Listing 2.17 illustrates the changes
made by the compiler plugin (simplified, not conforming to the real generated code).

The Composer holds a cache which stores all UI components as well as their relationships.
Executing Counter for the first time, composer.remember { mutableStateOf(0) } stores
the initial value of the MutableState, which is 0, within the cache. Next, the Text and
Button components are added and rendered to the screen. When reevaluating Counter

at the same cache position, the counter variable accesses the value within the cache,
allowing Counter to have local state. The previous versions of Text and Button are also
updated with their new versions created with the new value of counter. This updating
process of components needs to be efficient since the Counter function might get executed
many times until the program closes. That is why the compiler plugin performs some
analysis on the usage of mutable states like counter and introduces a diffing mechanism.

Listing 2.18 is pseudo-code but depicts how efficient updating may be achieved in prin-
ciple. Contrary to listing 2.17, composer.add is not only given the component itself but
also a closure on how to update the existing component. The first evaluation of Counter
in 2.18 is similar as in 2.17, storing the state of counter and the two components Text

and Button in the cache. However, subsequent executions will not need to recreate the
component every time but will rather only run the closure used for updating. Thus, the
text of the cached Text component is directly overwritten if the counter value has been
changed. An update for Button is not necessary since it does not depend on any mutable
state and therefore the cached Button can be used without any additional computation.

It should now be clear how the Jetpack Compose framework automatically updates com-
ponents efficiently. However, it is also important to determine when the update should oc-
cur. Listing 2.19 illustrates in pseudo code how Jetpack Compose can recognize changes.



2 Comparison of Java Swing and Jetpack Compose 12

fun Counter(composer: Composer){
var counter by composer.remember { mutableStateOf(0) }
composer.add(

// Create Component
Text(),

// Update Component
{ label => if(composer.changed(counter)){

label.text = counter
}});

// Button never changes
composer.add(Button(onClick = { counter.value++; composer.recompose();
}))

}

Listing 2.19: Efficient Updates (pseudo code)

The compiler plugin modifies the callback which is executed on a Button click. Whenever
the mutable state counter is updated, composer.recompose() triggers a reevaluation of
Counter at the correct cache position.

2.8 Celsius/Fahrenheit converter with Jetpack Compose

In this section, a Jetpack Compose application which converts from Celsius to Fahrenheit
and vice versa is shown. The user can either enter the temperature in Celsius or in
Fahrenheit into text fields and the other unit is calculated by the converter.

Listing 2.20 contains the code for the model. The class Model stores the current
temperature in Celsius. It also contains the functions celsiusToFahreinheit and
fahreinheitToCelsius to convert between Celsius and Fahrenheit. The properties
celsius and fahreinheit are used to get the current temperature from the model. The
functions setCelsius and setFahreinheit create a new Model with the given tempera-
ture.

Listing 2.8 shows the Jetpack Compose code for the application. The main function calls
application, which runs the App component wrapped within a Window component. The
App component holds the current model state which is shown by the two NumberInputs as
Celsius and Fahrenheit respectively. The NumberInput is a text field which only triggers
the onChange callback if the user enters a valid integer number. Therefore, the callbacks
for both NumberInputs update the model within App only when the user enters a valid
number.

Figure 2.2 depicts the temperature converter.



2 Comparison of Java Swing and Jetpack Compose 13

class Model(val celsius: Int){
private fun celsiusToFahreinheit(celsius: Int): Int {
return (celsius * 9 / 5) + 32

}

private fun fahreinheitToCelsius(fahreinheit: Int): Int {
return (fahreinheit - 32) * 5 / 9

}

fun setCelsius(celsius: Int): Model {
return Model(celsius)

}

fun setFahreinheit(fahreinheit: Int): Model {
return Model(fahreinheitToCelsius(fahreinheit))

}

val fahreinheit: Int
get() = celsiusToFahreinheit(celsius)

}

Listing 2.20: Celsius/Fahreinheit converter

fun main() = application {
Window(onCloseRequest = ::exitApplication) {

App()
}

}

@Composable
@Preview
fun App() {

var model by remember { mutableStateOf(Model(0)) }
Column {

NumberInput("Celsius", model.celsius, {celsius -> model = model.
setCelsius(celsius)})

NumberInput("Fahreinheit", model.fahreinheit, {fahreinheit -> model
= model.setFahreinheit(fahreinheit)})
}

}

@Composable
fun NumberInput(label: String, number: Int, onChange: (Int) -> Unit){

OutlinedTextField(
value = number.toString(),
onValueChange = { value -> try {

onChange(value.toInt())
} catch(e: NumberFormatException) {
// do nothing for non-numbers

}
},
label = { Text(label) }

)
}



2 Comparison of Java Swing and Jetpack Compose 14

Figure 2.2: Celsius/Fahrenheit converter with Jetpack Compose



Chapter 3

Reactive Markup

Reactive Markup is a GUI library for the programming language Haskell. Haskell is known
as a purely functional language, which means that Haskell code does not have side effects
and operates on immutable data structure.

The components of a GUI application change regularly while the application is run-
ning. When the user inputs characters into a text field, the text field needs to adapt
its state. Because GUI applications often need mutable state, GUI programming can be
cumbersome in a language like Haskell which does not support arbitrary mutation of
components. In order to combine the Haskell and GUI programming, Reactive Markup
has a unique architecture which allows for a side-effect free creation of GUI components.

3.1 Architecture

Figure 3.1: Reactive Markup Architecture

The GUI definition is a description of the GUI which should be displayed. This means

15



3 Reactive Markup 16

data Words = Words Text

Listing 3.1: The definition for a label component

that the GUI definition does not actually contain the real GUI components, but just the
data needed to create them. For example, the Words data type in Listing 3.1 contains
some text content which is then later used to construct a label which is displayed to the
user.

The GUI definition is best thought of as a tree of components descriptions as can be seen
in Figure 3.1. As an analogy, the GUI definition is similar to HTML with some additional
features to allow for components to change during run-time.

The GUI definition is created by the developer with a Domain Specific Language (DSL)
and corresponds to the Markup datatype. The DSL will be covered in Section 3.2.

Reactive Markup provides a function to transform the GUI definition into an interactive
GUI application. Not only are components from the GUI definition mapped to their
native counterparts, but also interactive functionality is set up during the transformation.
The GUI definition also describes how events are handled and how the GUI updates based
on those events. For example, a click on a GTK button might trigger an event handler
which was specified in the GUI definition. The event handler may then change a GTK
component.

The backend of a Reactive Markup application is the underlying framework used to create
the GUI. There exist transformation functions for each backend which transform the GUI
definition to a GUI application. The transformation functions map the GUI definition
to backend-specific native components and backend-specific event handlers. Currently,
there exists support for a GTK and a web backend.



3 Reactive Markup 17

gui :: Markup Gtk Paragraph Void
gui = text "Hello Reactive Markup"

Listing 3.2: Hello Reactive Markup

3.2 Reactive Markup DSL

In this section the declarative GUI framework Reactive Markup is presented from a
user’s perspective. Reactive Markup is a Domain Specific Language (DSL) for defining
graphical user interfaces. It is a library deeply embedded within the programming lan-
guage Haskell. Haskell is a lazy functional programming language which is known for its
strict management of side effects and its expressive static type system. Reactive Markup
makes use of these properties to allow for composition of components and to guarantee
that incorrect uses of components are caught at compile time.

Additionally, Reactive Markup draws inspiration from similar declarative GUI libraries
and its DSL incorporates the following ideas:

Components are created as immutable structures.

Components depend solely on the model such that the GUI itself carries no additional
state.

The GUI is automatically updated whenever the model changes.

These concepts can be realised in the Haskell language due to its favour towards im-
mutable data structures and first-class support for functions. Furthermore, Reactive
Markup extensively relies on Haskell features to provide the transformation from GUI
definition to GUI application in an extensible and safe manner.

3.2.1 Hello Reactive Markup

In Reactive Markup, GUIs are built using normal Haskell expressions representing the
GUI components. Listing 3.2 illustrates a label with the content "Hello Reactive-Markup

". The text function is used to create a label. text takes some text content as input and
produces Markup. Markup corresponds to the GUI definition introduced in Section 3.1.
The GUI definition describes the GUI which is later transformed into an actual GUI
application.

Figure 3.2: Component tree for the Words component



3 Reactive Markup 18

nested :: Markup Gtk Common Void
nested = column [

text "First row",
text "Second row"

]

Listing 3.3: Nested components

Figure 3.2 shows a visualization of the GUI definition of gui as a tree of components.
The only component within the tree is Words from Listing 3.1, which is the component
for labels.

The Markup datatype representing the GUI definition has a few type parameters referring
to the backend, the context and the event of the component. The backend is Gtk, which
means that gui will be used to create a GUI with the GTK framework. The context
is Paragraph which defines that gui only contains components which are relevant for
displaying text. Finally, the event is Void, indicating that no events can happen since
the Void type is uninhabited. These parameters will be elaborated upon in the following
chapters.

Figure 3.3 shows the created GUI when transforming the markup from Listing 3.2 to a
GTK application.

Figure 3.3: Hello Reactive Markup with GTK

3.2.2 Nested components

Markups are regular Haskell expressions which can be freely moved around or saved in
variables. Since Markup is just data, it is possible to flexibly transform Markup code in
various ways. Markup code can be used as an input to other components which results
in natural nesting. This is illustrated in Listing 3.3. The column function takes a list
of components as input and aligns them vertically. The labels with "First row" and
"Second row" are rendered from top to bottom, which can be seen in Figure 3.4.

Figure 3.4: Column component in Gtk

Figure 3.5 shows the tree of component for nested. The Column component is the parent
of the two Words components since it is higher up in the hierarchy. This means that the
Column component contains the two Words components.



3 Reactive Markup 19

Figure 3.5: Nested component tree

data Model = Model Int

statefulGui :: Model -> Markup Gtk Common Void
statefulGui (Model state) = row [

string "Current state is:",
string (show state)

]

Listing 3.4: State as function input

The type parameters of Markup have also changed. The context of nested is now Common

instead of Paragraph. In distinction to Paragraph with its focus on text related compo-
nents, Common is a context for all kinds of components with no particular focus.

3.2.3 Stateful components

Reactive Markup follows the design pattern introduced in Figure 1.1 where the view
should only depend on the model state. Normal Haskell functions are used to create a
mapping between the model state and the view. Using a function for this purpose is also
done by other declarative GUI frameworks like Jetpack Compose, cf. Section 2.

The GUI definition is a static structure composed of immutable components, which
means that it is impossible for components to have internal state. Therefore, the only
way to create stateful components is via functions which receive the state as their input
parameter and produce a GUI definition as output.

Listing 3.4 depicts an example where the GUI definition depends on the Model input
parameter. The function statefulGui receives the current state of the model as an input
parameter and creates a GUI definition using that state. The created view consists of the
row components with two labels as children. The function row works similarly to column

from Section 3.3 but aligns the children horizontally. The first child of row is a constant
label while the second one shows the current model state.

Using functions to deterministically create the view from the model state has the ad-
vantage that state management is explicit and can be traced throughout the program.
Furthermore, the GUI and the model state can never diverge which eliminates the need



3 Reactive Markup 20

gui :: Markup Gtk Common Void
gui = statefulGui (Model 7)

Listing 3.5: Evaluating statefulGui

type Behavior a = Time -> a

type Event a = [(Time, a)]

Listing 3.6: Behavior and Event

for hand-written synchronization between model and view. Another beneficial property
of functions is that using the same model will always produce the same GUI definition.

Evaluating statefulGui with the constant model Model 7 shown in Listing 3.5 results in
the GUI in Figure 3.6. If the model were changed to Model 8, then it is possible to use
statefulGUI to create a new GUI definition which renders an 8 on the screen.

Figure 3.6: statefulGui with 7

3.2.4 Dynamic values

In Listing 3.4 the GUI adjusts depending on the given model. However, the model is fixed
when compiling the application and cannot change during runtime. Additional functions
are needed to create a GUI definition which can deal with a dynamic model. Reactive
Markup takes inspiration from Conal Elliotts work on push-pull based functional reactive
programming (FRP) [3].

FRP defines semantics to deal with values which change over time with the two concepts
Behavior and Event illustrated with pseudo code in Listing 3.6. A Behavior defines a
value for each point in time. We can imagine the previously static model to be wrapped
within a Behavior. Then, as the application is running and advancing in time, the model
may change. Contrary to the continuous Behaviors, Events define values for discrete
points in time. A potentially infinite number of events may occur at specific points in
time and carry a value as payload [3].

A Dynamic in Reactive Markup is a combination of both Behavior and Event. Whenever
an Event happens, the value of the Behavior is updated to the Event payload. Figure
3.7 illustrates the life cycle of a Dynamic. The Dynamic holds an Int value. At time t1

it contains 2. Then, e1 happens and its value is updated to 1. Later, e2 occurs and the
value is changed to 3. Reading the Dynamic at t2 results in 3.

The Dynamic provides a value for each point in time and also provides the discrete points
in time when the value changed. By wrapping the model within a Dynamic, the model
may change during run time and the GUI can be adjusted on changes.



3 Reactive Markup 21

Figure 3.7: Dynamic Int value

data Model = Model Int

statefulGui :: Dynamic Gtk Model -> Markup Gtk Common Void
statefulGui state = column [

"Current state is:",
dynamicMarkup state modelAsLabel

]
where
modelAsLabel :: Model -> Markup Gtk Common Void
modelAsLabel (Model state) = string (show state)

Listing 3.7: Model wrapped in Dynamic

Listing 3.7 is similar to Listing 3.4 yet uses a Dynamic to wrap the model. Instead of Model
, statefulGui now requires a Dynamic Gtk Model as input. The function dynamicMarkup

can be used to unwrap the Dynamic and use the model value. The first argument of
dynamicMarkup is the Dynamic to read. The second parameter is a component using the
model value. dynamicMarkup responds to changes of the model and updates the GUI
automatically. When state changes, modelAsLabel will be updated as well.

The function dynamicMarkup from Listing 3.7 is only a wrapper for the DynamicMarkup

data type shown in Listing 3.8. DynamicMarkup contains dynamic state as well as a func-
tion which uses the state. This is sufficient information for the transformation function
explained in Figure 3.1 to create an interactive GUI.

Figure 3.8 illustrates the component tree for statefulGui where the model is initialised
with Model 7. Column and the left Words do not depend on the state; it is only needed for
DynamicMarkup. At runtime, DynamicMarkup reads the current value of the dynamic model
and feeds it into modelAsLabel. The Component Definition generated by modelAsLabel is

data DynamicMarkup state backend context event = DynamicMarkup
(Dynamic backend state)
(state -> Markup backend context event)

Listing 3.8: The DynamicMarkup component



3 Reactive Markup 22

Figure 3.8: Dynamic stateful components

then transformed and dynamically inserted into the GUI application whenever the state
changes. The yellow background in the figure is used to signify the parts of the GUI
definition which are only generated at run-time.

Although the GUI definition itself is static, the GUI application can be interactive by us-
ing Dynamic values. As illustrated in Figure 3.1 about the Reactive Markup architecture,
the GUI definition is not only used to create the native components but also to set up
the event handler. The components Words or Column are mapped to native components
while DynamicMarkup is used to create the event handler which applies changes to the
GUI.

Figure 3.9 illustrates what happens when the dynamic model value changes to Model 8

at run-time. The component DynamicMarkup recognizes when changes occur, evaluates
modelAsLabel with the new model value and updates its child component. Notice that
column and the "Current state is:" component do not need to be reevaluated since
they are static and do not depend on the current value of the model. That is why
dynamicMarkup should be used as late as possible to avoid unnecessary computation. In
this example, state changes only result in adjustments of the view for modelAsLabel.
Since dynamicMarkup is used to unwrap a Dynamic only when it is needed, recomputa-
tions of the static parts are avoided.

3.2.5 GUI Events

With the help of the DynamicMarkup component, it is possible for the GUI to automati-
cally react to changes in the model. However, in order to interactively change the model,
it is also necessary to handle user input.

While model changes are directly accessible through Dynamics, GUI events are handled



3 Reactive Markup 23

Figure 3.9: Model change at runtime

myComponent :: Markup backend context event

Listing 3.9: Markup type

more implicitly. The third parameter of the Markup type refers to the event as shown
in Listing 3.9. The event type indicates that myComponent may trigger events of that
type. It also means that myComponent may not trigger events of any other type as event.
Therefore, when using myComponent, it is exactly known which kinds of events may occur.

Listing 3.10 illustrates a button which emits an event of type (). Using () as the payload
for button clicks events is appropriate since it is enough to know that the click event
occurred and no additional information is needed about the event.

The Button datatype contains a child Markup which is used as the label and which may
not fire any events. Additionally, Button may contain a click value. If the click field is
Nothing, then no event is fired when the button is pressed. However, if click is Just

eventPayload, then an event with eventPayload is fired upon button clicks.

In order for the button to fire events, it is necessary to modify the click field of the
Button. However, button already wrapped the Button within Markup. modifyComponent
can be used to apply a function on the underlying component that is wrapped by Markup.
\btn -> btn {click = Just ()} is a function which sets the click field of Button it is
given to Just (). Therefore, clickButton is a button with the label "Click me" where
the click field was set to Just (). It has the type Markup Gtk Common () and may trigger
events of type (). The resulting GUI is depicted in Figure 3.11.

Listing 3.11 shows an example of a column which contains two clickButtons. The function
twoButtons has an event type of () although column does not trigger any events. That



3 Reactive Markup 24

data Button backend event = Button
{ label :: Markup backend Paragraph Void,
click :: Maybe event

}

button :: Markup Gtk Paragraph Void -> Markup Gtk Common Void
button label = Markup

( Button
{ label = label,
click = Nothing

}
)

clickButton :: Markup Gtk Common ()
clickButton = modifyComponent (\btn -> btn {click = Just ()}) $

button (text "Click me")

Listing 3.10: Simple Button

Figure 3.10: GTK GUI of clickButton

is because column inherits its event type from its children.

Figure 3.11 depicts the GUI definition for twoButtons. When one of the clickButtons
is clicked, its event will automatically be handed to the column component. Since the
column component does not handle events, it passes the event upwards to its parent
component. The parent component can either handle the events or once again propagate
them upwards.

Since the event type is tracked at the type level, it is ensured at compile time that the
automatic propagation of events does not result in any errors when managing events.
The type checker is also able to infer the event type of the parent component when the
event types of the children are known.

One issue of this approach is that column is only able to pass through events of a single
type. If there are two different event types, then the solution is to create a sum type
which can contain both event types. Listing 3.12 shows how to create an Event datatype
with two different constructors EventA and EventB. The buttons fire events of the same
type but with different values so that they can later be distinguished in the event handler.

twoButtons :: Markup Gtk Common ()
twoButtons = column [clickButton, clickButton]

Listing 3.11: Automatic event propagation



3 Reactive Markup 25

Figure 3.11: Component tree for twoButtons

data Event = EventA | EventB

twoButtons :: Markup Gtk Common Event
twoButtons = column [

modifyComponent (\btn -> btn {click = Just EventA}) $
button "Fires EventA",

modifyComponent (\btn -> btn {click = Just EventB}) $
button "Fires EventB"

]

Listing 3.12: Dealing with different event types

3.2.6 GUI events changing the model

The previous section only showed how to trigger events but not how to react to
them. Since events occur only at specific points in time, it is not possible to sim-
ply get their value. Instead, Reactive Markup provides components which act when-
ever an event occurs. One of those event-handling components is simpleLocalState. It
is similar to remember(mutableStateOf(initialState)) in Jetpack Compose (cf. 2.4).
simpleLocalState stores a local model and updates it whenever an event occurs.

Listing 3.13 illustrates a counting application with a button and a label. Each click of the
button increases the number shown in the label by one. The countingButton component
is created with the function simpleLocalState with the following parameters:

The first parameter is the initialState of the model.



3 Reactive Markup 26

data Model = Model Int

clickButton :: Markup Gtk Common ()
clickButton = button (string "Click me") $= \btn -> btn {click = Just ()}

countingButton :: Markup Gtk Common Void
countingButton =

simpleLocalState
initialState
handleButtonClick
buttonWithNumber

where
initialState :: Model
initialState = Model 0

handleButtonClick :: () -> Model -> Maybe Model
handleButtonClick () (Model state) = Just (Model (state + 1))

buttonWithNumber :: Dynamic Gtk Model -> Markup Gtk Common ()
buttonWithNumber model = column

[dynamicMarkup model modelAsLabel, clickButton]

modelAsLabel :: Model -> Markup Gtk Common ()
modelAsLabel (Model int) = string $ show int

Listing 3.13: Counting application in Reactive Markup

The second parameter handleButtonClick is a function which handles the occurrence
of events. Given the event data () and the old Model state, it produces the new Model

state by increasing it by one.

The third parameter buttonWithNumber is a component with the model as an input
parameter. The model of type Dynamic Gtk Model has the initial value specified by
initialState and is updated according to handleButtonClick whenever a () event
happens.

The () events are triggered by the clickButton component from listing 3.10 and are
propagated through the column component and then handled by simpleLocalState.

Figure 3.12 shows the component tree for countingButton. When the Button is clicked,
the () event is propagated upwards to LocalState. The LocalState component evaluates
the function handleButtonClick with the event payload () and the old Model to produce
the new Model. The new Model is used to update the Dynamic Model. The Dynamic-
Markup component recognizes when changes happen in Dynamic Model and reads the
changed value of Dynamic Model. The new model value is used to generate a new GUI
definition with modelAsLabel which is then transformed and inserted into the running
GUI application. The resulting GTK application is illustrated in Figure 3.13.

3.2.7 Controlling the event flow

Since events are propagated automatically, there is no need to explicitly use callbacks to
manage events within an application. However, not using callbacks also means that events



3 Reactive Markup 27

Figure 3.12: GUI definition for countingButton

cannot be accessed as directly, which is why Reactive Markup provides components to
modify events.

It is possible to map events as they travel up the component hierarchy. Since Markup

implements Functor, fmap can be used to modify the event triggered by a component.
In Listing 3.14, the already familiar clickButton is modified so that clickButtonText

triggers an event with the value "Button clicked". The original event value () of
clickButton is mapped to "Button clicked" in (\() -> "Button clicked"). This map-
ping is then applied to clickButton by using fmap.

Events can not only be mapped but also filtered. Listing 3.16 implements a text field
component which accepts only lower case letters while Listing 3.15 explains the TextField

clickButtonText :: Markup Gtk Common Text
clickButtonText = fmap (\() -> "Button clicked") clickButton

Listing 3.14: Mapping events from components



3 Reactive Markup 28

Figure 3.13: Counting button in GTK

data TextField t e = TextField
{ text :: Dynamic t Text,
change :: Maybe (Text -> e)

}

myTextField :: Dynamic Gtk Text -> Markup Gtk Common Text
myTextField content =

modifyComponent (\txtfield -> txtfield {change = Just id}) $
textField content

Listing 3.15: The TextField component

component.

The TextField datatype represents a text field. The text field stores the dynamic text
content which may change over time. The change field may contain a function which
creates an event from the current text content. If such a function is specified, then the
event is created whenever the text of the text field changes.

The function textField is a function which wraps the TextField datatype within Markup

and sets the text field of TextField to content. Similar to Listing 3.10, modifyComponent
is used to access TextField and set its change field to Just id. Since the change field is
not Nothing, an event will be fired. The event is calculated with the id function, which
means that the text content of the text field will be used directly as the event value.
Figure 3.14 shows the text field component in GTK.

Figure 3.14: myTextField in GTK

The function myTextField emits events for all content changes, however only text that
is lowercase should trigger an event. The component filterEvents can filter out events
which are not interesting. It is used in Listing 3.16 to only let lowercase words pass
through. The first argument of filterEvents is a function with type event -> Maybe

event to decide which events should be kept. Events wrapped within a Just are kept
while Nothing indicates that the event should be dropped. The second argument of
filterEvents is the component from which the events are filtered, which is myTextField
from the previous Listing 3.15.

Figure 3.15 illustrates the GUI definition for lowerCaseTextField. The TextField triggers
events whenever its content is changed. The events are propagated to FilterEvents which



3 Reactive Markup 29

lowerCaseTextField :: Dynamic Gtk Text -> Markup Gtk Common Text
lowerCaseTextField content = filterEvents

(\content -> allLowerFilter content
then Just content
else Nothing

)
(myTextField content)
where

allLowerFilter text = all isLower (unpack text)

Listing 3.16: A text field for lower case inputs

Figure 3.15: GUI definition for lowerCaseTextField

drops all events which do not fulfill the allLowerFilter predicate. The events which
fulfill the predicate are propagated upwards to the parent.

3.2.8 Contexts

GUI components are often assumed to be used within a specific context. For example,
it does not make sense to create a button as a child component of another button.
Such mistakes are normally only found at run-time. Depending on the used components,
different restrictions or capabilities may apply when defining the GUI.

Contexts are a unique concept in Reactive Markup and make it possible to constrain
which kinds of components may be contained within a component at compile-time. The
context type parameter of Markup shown in Listing 3.17 is used to track the context of a
Markup. As mentioned in sections 3.2.1 and 3.2.2, Paragraph is used for textual content
while Common is a general purpose context for all kinds of components with no special



3 Reactive Markup 30

myComponent :: Markup backend context event

Listing 3.17: Context of Markup

myLabel :: Markup Gtk Paragraph Void
myLabel = text "Label"

myRow :: Markup Gtk Common Void
myRow = row []

boldLabel = bold myLabel -- Legal

boldRow = bold myRow -- Illegal

Listing 3.18: Bold component is only allowed for paragraphs

restrictions.

Listing 3.18 and Listing 3.19 show where the more specialized Paragraph can be used
while Common can not be used. In Listing 3.18, myLabel is a label with a Paragraph

context while myRow is a row with a Common context. The bold function can only be
used on components with the Paragraph context since the behavior for boldening Common

components like a row is not clear. Therefore, only boldLabel is legal while trying to
compile boldRow will result in a compilation error.

Listing 3.19 shows the concatenation of components with a Paragraph context via the
Semigroup typeclass. The <> operator can be used to concatenate two Paragraph compo-
nents similar to how strings can be combined. In this example, myLabel is a component
with a Paragraph context. concatenatedLabels combines an italic version of myLabel

and a bold version of myLabel. The result can be seen in Figure 3.16.

3.2.9 Cross-platform GUIs

Reusing the same code for different platforms can prove to be rather challenging. Reactive
Markup has been created with the idea in mind to support multiple platforms. Ideally,
the same code base can be used for various systems without any major modifications.

Reactive Markup facilitates coding for various platforms with the backend type parameter
of Markup shown in Listing 3.20. The backend of a Markup specifies the architecture the
GUI is programmed for. Reactive Markup makes sure at compilation-time that only
components are used which are supported by the chosen platform.

myLabel :: Markup Gtk Paragraph Void
myLabel = text "Label"

concatenatedLabels :: Markup Gtk Paragraph Void
concatenatedLabels = italic myLabel <> text " " <> bold myLabel

Listing 3.19: Concatenated paragraphs



3 Reactive Markup 31

Figure 3.16: Concatenated paragraphs in GTK

myComponent :: Markup backend context event

Listing 3.20: backend of Markup

Up until now, all examples were created with the GTK backend. However, there exists
another backend called RDom which uses the library reflex-dom under the hood to create
web interfaces.

Recall the counting button example from before in 3.13. It can be ported to RDom with
minimal adjustments which are shown in Listing 3.21. The counting button example
consists of a label, a button and state management with simpleLocalState; all of which
are supported by RDom. In order to specify that the GUI is for RDom instead of Gtk, it is
sufficient to modify the backend parameter of Markup so that all occurences of Gtk are
replaced with RDom.

Listing 3.21 can now be run on the browser. Is is identical to Listing 3.13 except that
Gtk has been replaced with RDom. Figure 3.17 depicts the counting button example for
the two backends RDom and Gtk.

Figure 3.17: Reactive Markup on the browser and in GTK

3.2.10 Celsius/Fahrenheit converter

In this section, a Celsius/Fahrenheit converter is implemented with Reactive Markup.
The temperate can be entered in Celsius or in Fahrenheit and the other unit is calculated
by the program. It is similar to the converter application built with Jetpack Compose
(c.f. 2.8).

Listing 3.22 shows the application model. The Model datatype contains the temperature
in Celsius and the function fahrenheit computes the temperature in Fahrenheit from



3 Reactive Markup 32

data Model = Model Int

clickButton :: Markup RDom Common ()
clickButton = button [\buttonOptions -> buttonOptions {click = Just ()}] (

string "Click me")

countingButton :: Markup RDom Common Void
countingButton =
simpleLocalState
initialState
handleButtonClick
buttonWithNumber

where
initialState :: Model
initialState = Model 0

handleButtonClick :: () -> Model -> Maybe Model
handleButtonClick () (Model state) = Just (Model (state + 1))

buttonWithNumber :: Dynamic RDom Model -> Markup RDom Common ()
buttonWithNumber model =
column
[ dynamicMarkup model $ \(Model int) -> (string $ show int),
clickButton

]

Listing 3.21: Counting button ported to the web

the Model. The functions setCelsius and setFahrenheit are used to create a new model
with the given temperature, exactly like with Jetpack Compose in Listing 2.20.

In contrast to Jetpack Compose, it is also necessary to define which events may happen
within the application. AppEvent is the datatype used for the events. The SetCelsius

and SetFahrenheit constructors mean that Celsius or Fahrenheit need to be updated.
The function handleEvent handles an AppEvent and computes the Model.

Listing 3.23 contains the GUI code needed for the converter. The main function uses
runGtk to start the Reactive Markup application with the GTK backend. The simpleApp

function creates a Reactive Markup application given the app name and a Markup.
converter contains the main part of the GUI. The function simpleLocalState creates
the Model as local state which gets updated with the function handleEvent when an
AppEvent happens.

The numberField is a text field which only accepts integer values, similar to the Jetpack
Compose NumberInput from Listing 2.8. It is given the current temperature as a dynamic
value since the model changes during program execution. In contrast to the Jetpack
Compose solution, numberField does not require a callback parameter because events
are tracked automatically. To differentiate between events from the two numberFields,
they are mapped with SetCelsius and SetFahrenheit respectively. Then it is known in
the handleEvent function where the user has entered a new number.

Figure 3.18 depicts the Celsius/Fahrenheit converter.



3 Reactive Markup 33

data Model = Model { celsius :: Int }

fahreinheit :: Model -> Int
fahreinheit (Model celsius) = ((celsius * 9) `quot` 5) + 32

setCelsius :: Int -> Model
setCelsius celsius = Model celsius

setFahrenheit :: Int -> Model
setFahrenheit fahrenheit = setCelsius $ ((fahrenheit - 32) * 5) `quot` 9

data AppEvent = SetCelsius Int | SetFahreinheit Int

handleEvent :: AppEvent -> Model -> Maybe Model
handleEvent (SetFahreinheit fahrenheit) _ = Just (setFahrenheit fahrenheit)
handleEvent (SetCelsius celsius) _ = Just (setCelsius celsius)

Listing 3.22: Model for Celsius/Fahrenheit converter

main :: IO ()
main = runGtk $ simpleApp "Temperature Converter" converter

converter :: Markup Gtk Common Void
converter = simpleLocalState (Model 0) handleEvent $ \model ->
column
[ "Celsius",
fmap SetCelsius $ numberField (fmap celsius model),
"Fahreinheit",
fmap SetFahreinheit $ numberField (fmap fahreinheit model)

]

numberField :: Dynamic Gtk Int -> Markup Gtk Common Int
numberField state =
let text :: Dynamic Gtk Text = pack . show <$> state
in filterEvents parseNumber $ modifyComponent (\textField -> textField {
change = Just id}) $ textField text

where
parseNumber :: Text -> Maybe Int
parseNumber text = readMaybe $ T.unpack text

Listing 3.23: Markup for Celsius/Fahrenheit converter



3 Reactive Markup 34

Figure 3.18: Celsius/Fahrenheit converter with Reactive Markup



3 Reactive Markup 35

class Render component backend context where
render :: forall event. component event ->
RenderTarget backend context event

Listing 3.24: Render typeclass

data HtmlBackend

data HtmlText event = HtmlText Text
type instance RenderTarget HtmlBackend Paragraph = HtmlText

Listing 3.25: Implementing a HTML backend

3.3 Reactive Markup Implementation

The implementation of Reactive Markup focuses on defining the transform function which
maps GUI definitions to actual GUI applications. Recall the Reactive Markup architec-
ture from Figure 3.1. The GUI Definition defined by the DSL is transformed into native
GUI code which also handles changes and reacts to events.

3.3.1 Render typeclass

The transform function needs to be defined for every component. In addition, it is also
important to consider that each backend needs its own transform functions. In order to
represent this relationship, Reactive Markup uses the Render typeclass shown in Listing
3.24. The Render typeclass implements the transformation function for a given component

, backend and context. Given a component as input, the render function produces a
RenderTarget. The type of the event is universally quantified so that render can be
used with all events, no matter which type of events a component may trigger.

The RenderTarget is an open type family, which can be used in Haskell to compute type-
level terms. In the case of RenderTarget, the transformation result type is calculated
based on the used backend, context and the occurring event.

With the Render typeclass, it is possible to define transformation functions for many
components with various backends. Different contexts can also lead to different transfor-
mation functions since context is a type parameter of Render.

Listing 3.25 shows how to implement a backend which generates HTML code for Reactive
Markup paragraphs. The type HtmlBackend is the name for the backend which gener-
ates HTML code. The RenderTarget for the backend HtmlBackend and for the context
Paragraph is HtmlText. This means that the render function will transform Reactive
Markup components into HtmlText. HTMLText is a wrapper over the normal Text type.
The event parameter of HtmlText is unused since this example does not deal with events.

The transform function is implemented as instances of the Render typeclass which is
shown in Listing 3.26. The Render instances define the mapping between the components
Words, Bold and Combine and the target type HtmlText. Words components are mapped



3 Reactive Markup 36

instance Render Words HTMLBackend Paragraph where
render (Words text) = HtmlText text

instance Render Bold HtmlBackend Paragraph where
render (Bold boldComponent) =

let (HtmlText htmlText) = render boldComponent
in HtmlText $ "<b>" <> htmlText <> "</b>"

instance Render Combine Words HtmlBackend Paragraph where
render (Combine component1 component2) =

let (HtmlText htmlText1) = render component1
(HtmlText htmlText2) = render component2

in HtmlText $ innerText <> htmlText2

Listing 3.26: Transform functions for the HTML backend

data Markup backend context event = forall widget. Render component backend
context => Markup (component event)

Listing 3.27: The Markup datatype

verbatim to HtmlText, Bold components are wrapped with <b> tags and the Combine

component is used to concatenate two texts.

Listing 3.26 illustrates how components can be mapped to a specific backend. Writ-
ing such transformation functions for other backends like Gtk results in different
RenderTargets but is otherwise similar. Dynamic behavior can also be achieved by choos-
ing an appropriate RenderTarget, so this interface is also sufficient for more complex
components like DynamicMarkup or LocalState.

3.3.2 The Markup type

The Markup datatype defined in Listing 3.27 may hold any component which implements
the Render typeclass. Only components which really implement Render for the given
backend and context can be wrapped by the Markup type.

The main use of Markup is to aggregate all components which may occur in a specific
context and within a specific backend into one type. A sub-typing relationship between
components and the Markup type is created. In object-oriented terms, component backend

context event would be a subclass of Markup backend context event where component
can be any component which implements Render component backend context.

The Markup type can then be transformed by applying the render function on the inner
component as shown in Listing 3.28. It is known that the wrapped component implements
Render due to the constraint in the definition of Markup. The RenderTarget depends on
the backend, the context, the event, but not the used component. Therefore, although
Markup may contain different components, all Markups with the same type also have the
same RenderTarget.



3 Reactive Markup 37

renderMarkup :: Markup backend context event -> RenderTarget backend context
event

renderMarkup (Markup component) = render component

Listing 3.28: Rendering Markup



Chapter 4

Summary and Conclusion

Declarative GUI frameworks aim to simplify the creation of user interfaces by increas-
ing the level of abstraction. One such library is Jetpack Compose, which uses functions
mapping the application model to the view as the primary method to create the GUI.
Through a comparison with the imperative Java Swing GUI framework, it can be seen
that less code is necessary with Jetpack Compose and that Jetpack Compose takes care
of some tasks which had to be done manually in Java Swing. For example, updating the
view whenever the model changes needs to be done manually in Java Swing while this
happens automatically in Jetpack Compose.

Similar to Jetpack Compose, Reactive Markup is also a declarative GUI library which
uses functions to define GUI components. It is written in Haskell, therefore Reactive
Markup GUIs are defined in a deterministic fashion with immutable data structures and
without side-effects. Through the use of dynamic values, it is possible to control the
mutable parts of an user interface within an immutable environment.

In contrast to other libraries, Reactive Markup has a strict separation of the immutable
GUI definition and the mutable GUI program. Through transformer functions, a GUI
definition can be converted to a GUI program. This feature allows the development for
multiple platforms as well as the definition of GUIs in a side-effect free manner.

Moreover, Reactive Markup can be used to develop GUI applications for multiple plat-
forms with minimal changes by using different transformer functions. It is also possible
to extend Reactive Markup with additional low-level components without modifying the
base library. In this manner, platform-specific components can be developed with Reac-
tive Markup.

Reactive Markup is rather flexible. However, this is achieved through the use of many
advanced Haskell features which makes it more difficult to use. While the type parameters
of the Markup type allow for an adaptable GUI depending on the usage situation, they
can also be challenging to handle and may be the cause of hard to understand type errors.
This is especially a problem when the compiler cannot infer the type by itself and the
programmer needs to fill in the correct types by hand. As of right now, Reactive Markup
also does not have a sufficient amount of different components to handle a wide variety
of GUI application needs. While it is possible to develop basic applications, more specific
components like tables or images are not yet available.

38



4 Summary and Conclusion 39

In summary, Reactive Markup can already be tested with in small GUI applications. For
a wider adoption, more components need to be implemented. Additionally, it would be
beneficial if the Markup type could be simplified.



Bibliography

[1] developer.android.com. 2022. Architecting your compose ui. Retrieved 08/16/2022
from https://developer.android.com/jetpack/compose/architecture.

[2] developer.android.com. 2022. Thinking in compose. Retrieved 08/16/2022 from htt
ps://developer.android.com/jetpack/compose/mental-model.

[3] Conal Elliott. 2009. Push-pull functional reactive programming. In Haskell Sympo-
sium. http://conal.net/papers/push-pull-frp.

[4] haskell.org. 2022. Haskell: an advanced, purely functional programming language.
Retrieved 12/26/2022 from https://www.haskell.org.

[5] reactjs.org. 2022. Tutorial: intro to react. Retrieved 08/12/2022 from https://react
js.org/tutorial/tutorial.html#function-components.

[6] Francisco Vallarino. 2022. Monomer. Retrieved 12/28/2022 from https://github.co
m/fjvallarino/monomer.

[7] Oskar Wickström. 2022. Gi-gtk-declarative. Retrieved 12/28/2022 from https://ow
ickstrom.github.io/gi-gtk-declarative.

40

https://developer.android.com/jetpack/compose/architecture
https://developer.android.com/jetpack/compose/mental-model
https://developer.android.com/jetpack/compose/mental-model
http://conal.net/papers/push-pull-frp
https://www.haskell.org
https://reactjs.org/tutorial/tutorial.html#function-components
https://reactjs.org/tutorial/tutorial.html#function-components
https://github.com/fjvallarino/monomer
https://github.com/fjvallarino/monomer
https://owickstrom.github.io/gi-gtk-declarative
https://owickstrom.github.io/gi-gtk-declarative

	Sworn Declaration
	Abstract
	Kurzfassung
	Contents
	Introduction and Motivation
	Comparison of Java Swing and Jetpack Compose
	Structure of component code
	Uni-directional data flow
	Stateless components
	Mutation of components
	Model definition
	Reacting to changes
	Change management of Jetpack Compose
	Celsius/Fahrenheit converter with Jetpack Compose

	Reactive Markup
	Architecture
	Reactive Markup DSL
	Hello Reactive Markup
	Nested components
	Stateful components
	Dynamic values
	GUI Events
	GUI events changing the model
	Controlling the event flow
	Contexts
	Cross-platform GUIs
	Celsius/Fahrenheit converter

	Reactive Markup Implementation
	[style=biginline]Render typeclass
	The [style=biginline]Markup type


	Summary and Conclusion
	Bibliography

