
SEMINAR GARBAGE COLLECTION, INSTITUTE FOR SYSTEMSOFTWARE, JANUARY 2006 1

Distributed Garbage Collection Algorithms
Stefan Brunthaler

Abstract— This seminar report presents adoptions of unipro-
cessor garbage collection techniques which are able to operate in
a new context: distributed systems. We see that their application
to distributed system poses new problems and that there is
currently no algorithm available solving, or even addressing, all
of them.

The presented algorithms are structured according to their
belonging family: reference counting, mark-and-sweep and stop-
and-copy garbage collectors. Hybrid collectors that simultanously
apply different techniques are also presented.

Index Terms— Distributed garbage collection algorithms, dis-
tributed reference counting, distributed tracing.

I. I NTRODUCTION

T HE need for distributed systems has been growing in the
past, and will be growing in the future. Their proliferation

and success is out of the question. Several systems, frame-
works and middleware products have been crafted in order to
relief the burden of designing and implementing such systems.
Due to their inherent complexity and partly opposing require-
ments, such as reliability and high performance–particularly
difficult to achieve or guarantee in the context of networking–
, no silver bullet has been found.

Uniprocessor garbage collection has been a success story.
Programming languages have adopted this technique, and–
after intial scepticism–programmers got used to the technique,
since it considerably eases the tedious and error prone task
of memory management. In distributed systems, the task of
memory management is even more error prone, because of
memory references between systems. Consequently the need
for distributed garbage collection has emerged, and has been
an active field of research over the past years. However, the
number of proposed algorithms which only partly satisfy the
expected functionality of a distributed garbage collection al-
gorithm demonstrates that the field is still active, needs further
investigation, and no generally applicable/accepted algorithm
has been devised.

This seminar report draws its information mainly from
three papers, namely Chapter 15 of Jones and Lins book
on garbage collection [1], Plainfosse and Shapiro’s survey of
distributed garbage collection algorithms [2], and Abdullahi
and Ringwood’s garbage collecting the internet article [3].
Where appropriate, direct citations to other papers are made.

II. BACKGROUND

A. Definitions

”A system in which hardware or software components
located at networked computers communicate and coordinate
their actions only by message passing.”[4]

”A distributed system is a collection of independent com-
puters that appear to the users of the system as a single
computer.” [5]

B. Problem Description

Distributed systems are applications which are deliberately
designed to run on physically seperated systems, which are
interconnected by a common network infrastructure, either
a local area or a wide area network. The application of a
distributed system architecture is motivated by the following
advantages over ”traditional” single-processor systems, among
others:

• Reliabilty, i.e. satisfied by several machines which op-
erate on replicated data sets or are in fact a replicated
system, e.g. used in mission critical applicatgions, like
control of nuclear reactors or aircrafts,

• Performance, i.e. multiple interconnected computers can
reach the performance of a mainframe computer but cost
only the fraction of one,

• Functional distribution, e.g. client/server systems,
• Application domain, e.g. automatic teller machines, cash

register and inventory sytems, and roboter assembly lines.

What is important, however is–as a definition in the previous
section suggests–that the distribution of some parts of a system
is completely transparent to the user, and increasingly to
the programmer too, especially since the advent of RPC
(the Remote Procedure Call), CORBA (theCommon Object
Request Broker Architecture), and Java’s RMI (theRemote
Method Invocation).

According to Tanenbaum [5] there are several levels of
transparency:

• Location transparency, where users cannot tell where
resources are located,

• Migration transparency, where resources can move at will
without changing their names,

• Concurrency transparency, where users can share re-
sources automatically,

• Parallelism transparency, where activities can happen in
parallel without users knowing,

• Replication transparency, where users cannot tell how
many copies exist.

As we can see, a lot of concerns have to be taken into
account for building distributed systems. This is what es-
sentially makes garbage collection in distributed systems an
interesting problem. Our view on distributed systems focuses
on the system view of a distributed system, because garbage
collection happens at this level. In order to properly describe
the presented algorithms and problems, we use the following
nomenclature, see also Figure 1:

• inter and intra, determining whether we are dealing with
relationships within (intra) a given computer system or
site, or between (inter) a set of given computer systems
or sites,

• local and global systems, determining whether we are
dealing with a single computer system within the dis-
tributed system (local), or all participating systems
(global), intrasite relationships can only be local, whereas
intersite relationships can only be global,

• local and global address space, determining whether we
are dealing with a single computer system’s or the virtual
global address space built on top of the local address
spaces of each participating computer system,

• local and global objects, determining whether we are
dealing with objects local to their address space, or
globally accessible objects, sometimes referred to as
public objects,

• local and global references, local references are some-
times described as pointers, whereas the term references
is generally used to denote global references, i.e. inter-site
references from a global object to another, either global
or local object at another site,

• import and export record, an import record imports a
global, remote, reference to the local system, whereas an
export record is used for exporting references from local
public objects to the clients,

• local and global cyclic data structures (referred to as
cycles),

• client and owner computers, and systems respectively,
indicating whether a system references another system’s
public object (client), or a local object is referenced
by other systems, causing it to be promoted to a
global/public object; the latter is said to ”own” the object,
thus referred to as owner.

In the discussion of distributed garbage collection algo-
rithms we are going to encounter recurring problems. These
problems are two-fold: a) problems of the garbage collection
domain, and b) problems from the domain of distributed
systems. Problems of the category a mainly deal with the
properties of a garbage collection algorithm [1], [3]:

• premature reclamation of accessible objects, theunsound-
ness,

• failure to reclaim all extant garbage, yielding floating
garbage, theincompleteness,

• communication overhead, i.e. too many messages are
exchanged,

• cycles, i.e. local and global cycles have to be reclaimed
properly,

• synchronization, i.e. information about the state of global
references have to be exchanged, since it is not possible
to locally determine whether a reference is garbage or
not,

• robustness, i.e. an algorithm should be able to recover
from communication problems.

The major issue in category b are problems caused by unreli-
able networking, wich are:

• communication failure,
• message loss,
• message duplication,
• out-of-order delivery/non-causal delivery,
• delayed message delivery/latency.

Both problem sets are closely interrelated since problems
of category b are always somehow causing problems in the a
category.

III. R EFERENCECOUNTING APPROACHES

Because of their acyclic nature, most garbage collection al-
gorithms are not able to reclaim cyclically referenced garbage.
Some algorithms improve on this downside and extensions to
the presented algorithms, which take care of this problem are
explicitly mentioned.

A. Uniprocessor Adoption

The uniprocessor algorithm can fairly easy be adopted
to suit distributed system requirements. The increment and
decrement messages used in the uniprocessor algorithm just
have to be changed in order to send corresponding messages
for intersystem references. Consequently every creation of a
new reference to a global object, duplication of an existing
one and deletion of a present reference triggers a message,
which is sent to the owner of the global object, causing it to
increment, or decrement respectively, its reference count.

This straightforward adoption, however, has several draw-
backs, mainly caused by messaging failures due to unreliable
networking. Non-causal delivery of messages and message
duplication can lead to unsoundness, whereas the problem of
incompleteness arises when messages are lost. These prob-
lems can partly be eliminated by acknowledging the control
messages used to indicate changing reference counts, however,
this causes another disadvantage: communication overhead. As
mentioned in the beginning of this section, the algorithm is not
able to collect cycles.

B. Weighted Reference Counting

Original contribution in [6] and [7]. Weighted Reference
Counting, henceforth abbreviated as WRC, is a major im-
provement over the original reference counting algorithm.
This advantage manifests itself in a considerable reduction
of communication overhead, due to the absence ofrace
conditions. Race conditions originate by a non-causal delivery
of increment and decrement messages, ultimately causing
undsoundness, since an incoming decrement message can
cause an object to be reclaimed, even if a chronologically
earlier sent increment message is on its way, yet not received
by the owner of the object.

The application of redundant acknowledge messages in
the original algorithm cause the communication overhead.
Here WRC emerges with a meaningful abstraction solving
the problem of race conditions: weights. Instead of simply
counting all references to a public object, the object now
carries an additional weight, which is initialized to the max-
imum possible value of its designated storage area. If a
reference is created, its weight field is also intialized to the
maximum value, causing them to have equal weights, see
Figure 2. On reference duplication, the weight of the source
reference is halved. One half remains in the source reference,
the other half is assigned to the duplicated reference, see

2

Figure 3. Finally, when a reference is deleted, its weight is
used to decrease the weight of the global object, see Figure 4.
Consequently, the weight of the global object is at all times
equal to the sum of all weights of all the references to it. In
order to maintain this invariant, considerably less messaging
is required. One message is necessary for creating a reference,
one for duplication, and one for deletion. Because control
messages only decrement weights, no race conditions occur,
which renders the additional acknowledge messages–necessary
in the straightforward approach–superfluous.

Unfortunately, this algorithm has serious flaws too. Suppose
the maximum possible weight is2n (usingn bits of storage),
and every duplication of a reference causes this weight to
be halved, onlyn references can be made. One simple way
to overcome this major disadvantage, is to useindirections
[7]: Whenever the total weight drops to 1 (20), an indirection
reference is created and used for duplicating. If a reference to
an object contains an indirection reference, and this indirection
is not co-hosted at the owner of the global object, however,
two, instead of normally one messages are necessary to
access the actual global object. Hence with every additional
indirection layer, global object access requires more messages.
In a worst-case scenario, adominoeffect can occur, where a
reference is followed along its indirections and finally linked
back to its own local address space ([8], see also Figure 5).

Although this algorithm reduces communication overhead
and avoids race conditions, it is still not applicable when used
in conjunction with an unreliable network infrastructure.

Several extensions to this algorithm were made, in order to
enable it to collect cycles, e.g. [9]; however, this algorithm
uses a local mark and sweep collector, as suggested by Lins,
which puts it in the family of hybrid collectors.

C. Indirect Reference Counting

Original contribution in [10], [8] and [11]. Indirect Refer-
ence Counting, henceforth abbreviated as IRC, is another inter-
esting approach to the distributed reference counting problem.
Besides the field for storing the reference to a global object,
and the field for storing the current count value, IRC requires
an additional field within its memory cell. This additional
field is used for storing a reference to its parent object, i.e.
the object which created the reference. Consequently, all state
information is maintained within its references. Through the
parent field, a so calledinverted diffusion treeis created, which
is used for garbage collection purposes only (Figure 6). Every
new reference is the root of its own diffusion tree, with no
copy count and no parent data available. When a reference
is duplicated, the source reference becomes the parent of the
duplicated one, and the source’s copy count is increased by
one; the object reference itself, however, points to thesame
global object in both references, the source and the duplicated
one. This ensures that all references to a global object always
use shortest, i.e. the most direct, path to it, thus keeping
message exchange acceptable. Upon reference deletion, the
copy count of its parent is decremented, and the reference
is removed. Only references with copy count equal to zero
can be reclaimed, which applies only to leaves in the inverted

diffusion tree (Figure 7). Non-leaf references can also be
removed from the diffusion tree, however, their reclamation
is deferred until their copy count drops to zero (Figure 8 and
9 respectively). Ultimately this leads to floating garbage. The
algorithm is reasonably efficient: both, reference duplication
and deletion require only one message to be sent.

D. Trial Deletion

Original contribution in [12]. The algorithms idea is to
emulate deletion of objects, suspected to be garbage. After
this trial deletion, the reference count of the affected objects
is incremented again, in order to continue proper operation.
This procedure is able to collect garbage cycles. Despite
the interesting approach, this algorithm has disadvantages: a)
it cannot detect mutually referencing cycles, b) it needs a
heuristic to detect which objects probably are garbage.

E. Reference Listing

The reference count of global references is kept in the
according import record, i.e. every reference to a global
object, is reflected in the reference count of the import record.
Thus, the count associated with every import record should
invariably reflect the number of export records referencing it.

As mentioned earlier, unreliable messages break this in-
variant, since, e.g. a duplicated message causes this import
record’s reference count to be decremented two times. This
behaviour is appropriatly characterized in [2] as beingnon
idempotent. If an algorithm was able to adequately deal
with duplicated, or lost messages respectively, it would be
idempotent. Instead of simply counting the references within
the import record, a new import record is created for each new
reference, either allocated or duplicated, see Figure 10. This
adds the desired property ofidempotencyat the expense of
some memory overhead.

Furthermore, the algorithm is able to reasonably react to
crashed or unavailable systems. The algorithm is able to
compute the set of active clients by prompting them to send
live messages. Now the algorithm can decide what to do with
the reference it holds to unavailable systems. It can either
decide to:

1) keep the references and hope that an unavailable system
recovers,

2) reclaim the objects which were references by this sys-
tem, assuming that it has crashed.

IV. T RACING APPROACHES(MARK & SWEEP)

This section deals with the tracing family of distributed
garbage collection techniques. The heading of each section
is named after its original authors and an alternate, however,
expressive and useful name taken from [2] within parenthesis.
Since tracing garbage collectors are inherently cyclic, they are
also able to detect and reclaim cyclic data structures. This
feature is exposed of all of the following techniques and not
mentioned any further.

3

A. Uniprocessor Adoption

The straightforward adoption of the uniprocessor procedure
results in scheme, where a global master site tells each
participating system to suspend mutation and to start the
mark phase. Local garbage can easily be reclaimed without
synchronization. Global garbage however, requires each client
system, to send a mark message to the corresponding owner
in order to mark distributed data structures. (Any system can
be a client of multiple owners, which means that this system
is bound to send a mark message to each owner it holds client
references from). This global marking phase is complete, when
the master site is informed that all marking messages were
received, and there are no more messages in transit. After
marking the distributed system can enter the sweep-phase,
which needs no distributed counterpart, since all sweeping can
be done locally.

B. Hudak and Keller (Mark-Tree)

Original contribution in [13]. The Hudak and Keller algo-
rithm is based on the concurrent on-the-fly collector presen-
tend by Dijkstraet al. in [14], which allows for concurrent
mutation and collection. The mark-tree algorithm was con-
ceived for functional languages, and assumes that there is a
single root in the distributed computation graph of objects. The
modification of Hudak and Keller to the original algorithm al-
lows the distributed system to concurrently mutate and collect
on each participating system. Only the collection phases of
identificationand reclamationhave to globally synchronized.
Concurrent modification and collection of the distributed com-
putation graph uses two queues: one for mutator and one for
collector tasks. A task is the smallest autonomous unit of
processor activity. Each task locks the objects it intends to
modify, such that no change is lost.

Dijkstra’s algorithm uses a recursive marking scheme for
tracing the computation graph, which marks the nodes using a
tricolor scheme. In order to concurrently mark the distributed
computation graph, the recursive marking is replaced by so
called marking tasks. For each child of a given node, a new
mark task is created. Since each task runs locally, a global
child reference requires to spawn a child task on the referenced
system. Each child holds a reference to its parent task, and
notifies its parent by a so calleduptree task, which means that
its own marking phase is completed. Hence marking starts by
spawning a mark-task on the root of the computation graph,
and correspondingly ends when an uptree task is spawned from
the root.

Before marking, all cells have the colorwhite, which de-
notes that it has not yet been visited. A memory cell becomes
gray, if it has been identified, and seperate mark tasks have
been created for each of its children. A gray cell can become
black when it has received an uptree task from all of its
children. Concurrent mutator activity changes the distributed
computation graph, if, e.g. a new memory cell is allocated,
it automatically is black. After marking is complete, white
memory cells are considered to be garbage.

Additionally, the algorithm detects other kinds of garbage:
irrelevant tasks anddormantsubgraphs. Irrelevant tasks occur

due to ”a curious relationship between the computation graph
and task queues” [13]: Because of speculative parallelism,
it is possible to have active tasks referencing white cells,
i.e. if marking is complete, these irrelevant tasks have to
be considered garbage too. Dormant subgraphs owe their
existence to the same curious relationship. They describe
nodes, or subgraphs respectively, which happen to be reachable
from the root node, but their semantics dictate that no task can
ever propagate work there. By tracing from the tasks them-
selves instead of the root, dormant subgraphs can be detected.
Eventually both of them are considered to be garbage, and
have to be reclaimed.

C. Hughes (Tracing with Timestamps)

Original contribution in [15]. Hughes’ algorithm uses a sim-
ple, yet powerful, observation to identify distributed garbage
cycles: instead of simply marking nodes, the algorithm prop-
agates current timestamps, i.e. live objects and references
will always have a ”recent” timestamp, whereas garbage
objects timestamps will always remain constant, since no new
time is propagated to them. Thus reclamation collects all
objects, which timestamps indicate that they are ”older” than
the current time with a variable threshold. In order to use
timestamps, a synchronized global clock is necessary. This
requires a reliable network infrastructure.

The algorithm applies a structure as defined in [16]. Each
participating system in a distributed network does its ownlocal
mark and sweep, upon completion of its local garbage collec-
tion phase, it informs the other systems about the references to
global objects it retains. This procedure is unable to identify
and collect distributed cycles. Hughes’ timestamps solves this
problem. The local clock is intialized by a global synchronized
time. The local mark and sweep propagates the timestamps
from its roots down to the leaves of the computation graph.
After completion of local garbage collection phase, the sys-
tems exchange the timestamps of their references to each
other, i.e. the timestamps of the local export reference table
are sent along the way to their corresponding import records.
If their timestamps are below the received ones, they are
updated. Ultimately this leads to the global clock advancing
for live objects (”ticking”), and constant for dead ones. In
order not to prematurly reclaim live objects, the threshold T
for reclamation is set to the oldest global time fragment issued
at the beginning of the global garbage collection phase.

One major drawback of the algorithm is that isnot robust,
since a failed participating system prevents increasing the
global timestamp, consequently blocking garbage collection on
all other spaces. This is also true for slow systems, unwilling
to initiate a local garbage collection. Even worse is that this
behaviour is also exposed when the slow or failed system does
not even have any global references.

D. Liskov and Ladin (Logically Centralized Reference Ser-
vice)

Original contribution in [17]. As the name ”Logically Cen-
tralized Reference Service” suggests, the Liskov and Ladin al-
gorithm uses a completely opposing approach, when compared

4

to the previous ones. They use a centralized service, which is
physically replicated on every participating system to achieve
fault tolerance and high availablity, at the cost of redundance.
As in the structure suggested in [16] the algorithm uses local
mark and sweep garbage collectors for collecting the local
heap. They also report the bookkeeping information kept in
their import/export record tables to the central service, which
uses this information to build a graph of global references.
Now, a mark and sweep garbage collector is run against
this graph of global references. Finally, the results of this
”global” garbage collection is distributed again, such that the
just identified global garbage can be collected locally on each
node.

Using this original description, Rudalics [8] came up with
a counterexample, which proved that this algorithm in some
cases is not correct. This behaviour is due to the fact that the
correctness depends on the traversal order of a computation
graph by the local garbage collector. Rudalics proposes two
solutions to solve this problem. However, his suggestions
are costly and complex, which is probably why the original
authors chose to adopt Hughes algorithm, which solved their
problem too.

E. Lang, Queinnec, Piquer (Tracing with Groups)

Original contribution in [18]. This algorithm belongs to the
hybrid family of distributed garbage collectors, since it uses
a tracing garbage collector for local collection and a refer-
ence counting algorithm for collecting distributed garbage.
Moreover it is robust, since it relies on groups for garbage
collecting. These groups can be reorganized such that failed
or unavailable computer systems are omitted. The algorithm
depends on timouts and message acknowledgements to deter-
mine whether a system is cooperative or not. Additionally it is
also possible for a system to be part of multiple groups, such
that groups can be nested. To seperate the groups from each
other, every group uses its own unique identifier for collection
purposes. Like suggested in Ali [16] the algorithm uses a a
tracing garbage collector for local collection issues, however,
no further details of Ali’s algorithm are applied.

The algorithm is by far the most complex presented in
this report. The following steps summarize its operational
behaviour:

1) group negotiation
2) initial marking : Import records transmit their marks to

their corresponding export records. Import record marks
can either behard or soft. Export record marks can either
behard, soft, or none. A hard import record implies that
it is referenced outside of the current group, whereas
a soft import record indicates that it is–if at all–only
accessible from within the group from a non-root object.
(Compare figures 15, and 16 respectively)
The initial marks are computed locally to the group by
means of reference counters:

a) backup reference counters of all import records (on
every system),

b) for every export record on every system within
the group, a decrement message is sent to the

corresponding import record, if, and only if, the
system carrying the import item is belonging to
the current group,

c) after all messages in transit have been received,
every system traverses its import records, which
are markedhard, if their reference count is greater
than zero, and markedsoft else,

d) the initial reference counters are restored from their
backup copies of step 1, 2a.

3) local propagation: Local propagation uses two marking
phases. Export records are initally markednone. After
completion of the local tracing, allnonemarked export
records are garbage, and can thus be safely reclaimed.
The reclamation causes the reference counting algorithm
to send decrement control messages to the corresponding
import records. If their reference counts drop to zero,
they are reclaimed by the distributed garbage collection
algorithm, regardless of their mark. (Compare figure 17,
and 18 respectively)

a) First marking is performed using references from
hard import records and roots. Any export record
traced by this first step is markedhard,

b) The second marking proceeds fromsoft import
records, which marks previously unvisited export
recordssoft.

4) global propagation: A previously markedhard export
record has to propagate its mark to the corresponding
import record. (Figure 19)
If a new global reference is established, its import record
is always markedhard, since it is obviously accessible
from a root.

5) stabilization: The group is stabilized when there are no
more messages in transit, that carry marking messages
(can only be hardening messages). Additionally it is
required that every system has propagated all relevant
hard marking messages.

6) cycle reclamation: All accessible import records are
hard. Any soft import records indicate that they are not
accessible anymore, hence, their established references
to their local objects should be dropped in order to
enable the local garbage collector to reclaim the local
objects. Consequently, anysoft import record removes
its reference to the local object, by referencingnull
instead. (Figure 20)
Since thesoft import records are not accessible any-
more, their corresponding export records are going to
be markednone during the next garbage collection,
ultimately causing them to be reclaimed. This causes
the reference counting algorithm to send a decrement
control message to the import record, causing its refer-
ence count to drop to zero, and in consequence being
collected by the reference counting mechanism. In case
this import record belonged to a cycle, eventually every
import record belonging to the cycle receives a decre-
ment control message from their equally inaccessible
export records. Finally all their reference counts drop
to zero, and let the reference counting reclaim them.

5

(Figures 21 and 22)
7) group dismission

V. COPYING APPROACHES(STOP & COPY)

Nothing but just a few distributed garbage collectors using
this techique have been developed. Therefore, only one al-
gorithm is presented here representatively. The algorithm (as
described in [19]) is an adaption of an incremental scavenger
as used by Baker in 1987 [20].

The memory of a system is divided as following:
1) a small space for storing references from import records,

the so calledroot space,
2) the remaining space is split into two semispaces:

a) the fromspace,
b) the tospace.

Each of these semispaces is used for storing both, local and
remote references, i.e. references to export records. However,
these references are not mixed arbitrarily, but stored at differ-
ent locations within the semispace:
• the lower areaof a semispace is used for local references

exclusively,
• the upper area is used for storing remote references

exclusively.
In order to store remote references in the upper area of a
semispace, the allocation process on the upper side of the
semispace mirrors exactly the process of allocation on the
lower side, with changed signs of course, otherwise the global
references would be allocated in the tospace, which is of
course undesireable.

Like the mark-tree algorithm (see section IV-B) of Hudak
and Keller, this algorithm was conceived for a functional
programming language, viz. LISP, therefore assumes that there
exists a global root in the distributed computation graph.

Uniprocessor generation scavenging techniques are not able
to detect cycles by default. Since the algorithm is based on the
idea, it is also not able to reclaim distributed garbage cycles.

VI. CONCLUSION

As mentioned in the introduction, no 100 percent complete
approach to distributed garbage collection is available. Conse-
quently it is going to be an active research area for the time
being. Among the presented algorithms, surely the algorithm
of Lang et al’s algorithm (IV-E) provides the most advanced
solution, with the only disadvantage being the large amounts
of floating garbage it can accumulate. Otherwise it is very well
suited to the inherent requirements of distributed systems.

It is clearly demonstrated, that some of the design character-
istics of garbage collection algorithms, as well as the require-
ments for them, are opposing. Improving an algorithm along
one dimension, more often than not causes it to deteriorate
along another–possibly also important–dimension.

Most of the algorithms presented bear a noticeable re-
semblence to their uniprocessor counterparts, indicating that
perhaps a completely new approach of the techniques to the
area of distributed systems might yield better results.

APPENDIX I
FIGURES

6

Fig. 1. Key for figures. Squares denoted by letters A, B, and C respectively are systems.

Fig. 2. Creation of a new reference using Weighted Reference Counting. Memory cell layout.

Fig. 3. Duplication of an existing reference using Weighted Reference Counting.

Fig. 4. Deletion of a reference using Weighted Reference Counting.

Fig. 5. Domino effect as observed by Rudalics [8]. The small squares between import and export records in systems A and B denote indirection memory
cells.

7

Fig. 6. Inverted diffusion tree. Resulted by additionally storing parent references in the memory cells.

Fig. 7. Inverted diffusion tree after left leave node has been deleted. Copy count of its parent has been properly adjusted.

Fig. 8. Inverted diffusion tree after deletion of the reference from the parent node of the right outer leaf to the right reference cell. Cannot be reclaimed
since its copy count is greater than zero, leads to floating garbage in consequence.

Fig. 9. Inverted diffusion tree after deletion of the outer right leaf node.

8

Fig. 10. Reference Listing. Every global reference, from A to C, and B to C respectively, gets its own import record.

Fig. 11. Hughes’ tracing with timestamps. Initially all objects are unmarked.

Fig. 12. Initial timestamp is propagated along the distributed computation graph.

Fig. 13. Deleting a reference in system A, creates a large distributed garbage cycle. The next timestamp is propagated through the distributed computation
graph.

9

Fig. 14. After the system reclaimed the distributed garbage cycle.

Fig. 15. Piquer’s algorithm. Initial graph layout and inital reference counts.

Fig. 16. Piquer’s algorithm. After initial marking phase, deciding whether import records are hard or soft, part 1.

10

Fig. 17. Piquer’s algorithm. After initial marking phase, deciding whether import records are hard or soft, part 2.

Fig. 18. Piquer’s algorithm. After marking export records none.

11

Fig. 19. Piquer’s algorithm. Marking export and import records hard if they are reachable by a local root, System C.

Fig. 20. Piquer’s algorithm. Cutting references from import records to their corresponding local objects.

12

Fig. 21. Piquer’s algorithm. After local garbage collection of unreachable and unreferenced local objects. Export records would have been also reclaimed in
the last step, directly causing the decrement messages to be sent to the corresponding import record. Using this figure in the figure above and beyond suits
illustrative purposes only.

Fig. 22. Piquer’s algorithm. After distributed reference counting algorithm eliminated the remaining unreferenced import and export records.

13

REFERENCES

[1] R. Jones and R. Lins,Garbage collection: algorithms for automatic
dynamic memory management. New York, NY, USA: John Wiley &
Sons, Inc., 1996, ch. 15.

[2] D. Plainfosse and M. Shapiro, “A survey of distributed garbage col-
lection techniques,” inProc. Int. Workshop on Memory Management,
Kinross, Scotland (UK), Sept. 1995.

[3] S. E. Abdullahi and G. A. Ringwood, “Garbage collecting the internet:
a survey of distributed garbage collection,”ACM Comput. Surv., vol. 30,
no. 3, pp. 330–373, 1998.

[4] G. Coulouris, J. Dollimore, and T. Kindberg,Distributed systems (3rd
ed.): concepts and design. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2001.

[5] A. S. Tanenbaum,Distributed operating systems. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1995.

[6] D. I. Bevan, “Distributed garbage collection using reference counting,”
in Volume II: Parallel Languages on PARLE: Parallel Architectures and
Languages Europe. London, UK: Springer-Verlag, 1987, pp. 176–187.

[7] P. Watson and I. Watson, “An efficient garbage collection scheme for
parallel computer architectures,” inVolume II: Parallel Languages on
PARLE: Parallel Architectures and Languages Europe. London, UK:
Springer-Verlag, 1987, pp. 432–443.

[8] M. Rudalics, “Correctness of distributed garbage collection algorithms,”
Linz, Austria, Tech. Rep. TR 90-40.0, 1990.

[9] R. E. Jones and R. D. Lins, “Cyclic weighted reference counting without
delay,” in PARLE ’93: Proceedings of the 5th International PARLE
Conference on Parallel Architectures and Languages Europe. London,
UK: Springer-Verlag, 1993, pp. 712–715.

[10] Y. Ichisuki and A. Yonezawa, “Distributed garbage collection using
group reference counting,” Position paper for OOPSLA/ECOOP ’90
Workshop on Garbage Collection in Object-Oriented Systems., 1990.

[11] J. M. Piquer, “Indirect reference counting: a distributed garbage collec-
tion algorithm,” in PARLE ’91: Proceedings on Parallel architectures
and languages Europe : volume I: parallel architectures and algorithms.
New York, NY, USA: Springer-Verlag New York, Inc., 1991, pp. 150–
165.

[12] S. C. Vestal, “Garbage collection: an exercise in distributed, fault-
tolerant programming,” Ph.D. dissertation, Seattle, WA, USA, 1987.

[13] P. Hudak and R. M. Keller, “Garbage collection and task deletion in
distributed applicative processing systems,” inLFP ’82: Proceedings of
the 1982 ACM symposium on LISP and functional programming. New
York, NY, USA: ACM Press, 1982, pp. 168–178.

[14] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens, “On-the-fly garbage collection: an exercise in cooperation,”
Commun. ACM, vol. 21, no. 11, pp. 966–975, 1978.

[15] R. J. M. Hughes, “A Distributed Garbage Collection Algorithm,” in
Proceedings 1985 Conference on Functional Programming Languages
and Computer Architecture, Nancy, France, 1985, pp. 256–272.

[16] M.-A. KA, “Object-oriented storage management and garbage collec-
tion in distributed processing systems,” Ph.D. dissertation, Stockholm,
Sweden, 1984.

[17] B. Liskov and R. Ladin, “Highly available distributed services and fault-
tolerant distributed garbage collection,” inPODC ’86: Proceedings of
the fifth annual ACM symposium on Principles of distributed computing.
New York, NY, USA: ACM Press, 1986, pp. 29–39.

[18] B. Lang, C. Queinnec, and J. Piquer, “Garbage collecting the world,” in
POPL ’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, NY, USA: ACM
Press, 1992, pp. 39–50.

[19] M. Rudalics, “Distributed copying garbage collection,” inLFP ’86:
Proceedings of the 1986 ACM conference on LISP and functional
programming. New York, NY, USA: ACM Press, 1986, pp. 364–372.

[20] J. Henry G. Baker, “List processing in real time on a serial computer,”
Commun. ACM, vol. 21, no. 4, pp. 280–294, 1978.

14

