

[bookmark: _GoBack]Questions on specification, Design by Contract, Spec#
David Lightfoot, October 2011
1)
static int What0(int x)
/* requires x >= 0;
 ensures result * result <= x && x < (result+1)*(result+1);
*/
a)	What is the value of What0(26)?
b)	What does the precondition mean?
c)	Why do we have that particular pre-condition?
d)	What does the post-condition mean?
e)	What does What0 do?

2)
What does the following method do?
static void What1 (int [] a)
/* requires a != null
ensures forall {int i in (0:a.Length); a[i] == 0};
*/
Note: in Spec#, int k in (m: n) means m <= k < n

3)
static float AverageLength(string[] s)
/* requires ??;
 ensures result = (float) (sum {int k in (0: s.Length); s[k].Length()}) / s.Length;
*/
a)	What does AverageLength do?
b)	What should its pre-condition be? (Pay particular attention to possible null values).
c)	How could you rewrite AverageLength in Spec# to make use of facilities for protection against null values?

4)
static int Min(int[] a)
/* requires a != null;
ensures forall {int i in (0:a.Length); min <= a[i]};
*/
{ int min = 0;
 for (int j = 0; j != a.Length; j++)
 if (a[j] < min) min = a[j];
 return min;
}
a)	Does the implementation satisfy the specification of Min?
b)	If not, how would you fix it?
c) 	Does the implementation that consists simply of the body
	return MIN_VALUE; // the smallest value of type int
	satisfy the specification above?
d)	Write an improved specification.

5)
static int What2(int[] a, int x)
/* requires a != null;
ensures 	(0 <= result && result < a.Length &&
 exists {int k in (0: a.Length); a[k] == x} && a[result] == x) ||
			(!exists {int k in (0: a.Length); a[k] == x} && result == -1);
*/
a)	What does the pre-condition of What2 mean?
b)	What does the post-condition of What2 mean?
	Given the declaration:
int[] a= {15, 20, 19, 30, 25, 19, 22, -4};
c)	What is the value of What1(a, 40)?
d)	What is the value of What1(a, 19)?

6)
static int What3(int[] a, int x)
/* requires a != null;
 ensures 	(0 <= result && result < a.Length &&
exists {int k in (0: a.Length); a[k] == x} &&
forall {int j in (0: result); a[j] != x } && a[result] == x) ||
	(!exists {int k in (0: a.Length); a[k] == x} && result == -1);
*/
What3 is the same as What2 but with an extra term in the post-condition:
forall {int j in (0: result); a[j] != x }
a)	What does this additional term mean?
b)	Which is easier to implement, What1 or What2?

7)
static int What4(int[] a, int x)
/* requires a != null && forall {int i in (0: a.Length-1); a[i] <= a[i+1]};
ensures
(0 <= result && result < a.Length &&
 	exists {int k in (0: a.Length); a[k] == x} &&
forall {int j in (0: result); a[j] != x } && a[result] == x) ||
	(!exists {int k in (0: a.Length); a[k] == x} && result == -1);
*/
What4 is the same as What3 but with an extra term in the pre-condition:
forall {int i in (0: a.Length-1); a[i] <= a[i+1]};
a)	What does this additional term mean?
b)	How does the presence of this extra term affect a possible implementation?

Assertions in Java
We can simulate the effect of requires and ensures in languages that have assertion handling. Eiffel has a similar feature, with the same keywords. In Java we can use the built-in method:
assert Boolean-expression;
or
assert Boolean-expression: string;
When the program is run if the Boolean expression is true when the assert method is executed then nothing happens. If it is false a message is issued, including the string used in the method call and the program halts. Assertions are very good documentation because they assert what you believe should be true at a particular point in the program. if your assertion is incorrect then you soon get to know about it and can fix the program.
We can simulate the effect of requires and ensures in languages implementations that do not have those features:
Where you have requires pre;, include assert pre; as the first statement of the methods.
Where you have ensures post;, put assert post; just before the return statement or the textual end of the method.
Note however, that there is no provision for quantifiers, such as forall, exists, sum, so we will need to write our own methods to simulate the effect of these.
Enabling assertion handling in Netbeans:
By default assertion handling is turned off and your calls to assert are ignored. To turn on assertion handling:
· Select menu File
· Select menu item Project Properties
· Select category node Run
· Select text field VM Options
· Type -ea or -enableassertions
You can check that assertion checking is working by running the
a program with assert false; as the first line of the main method.

8)	
static boolean isSmallest (int []a,int min)
that returns true if and only if min is the smallest value in a.
a)	Write a specification for isSmallest.
b)	Write a Java implementation of isSmallest.

9)
Use your method isSmallest to write a Java implementation of Min using Java assertions to achieve the effect of the requires and ensures of your corrected specification of Min.

D Lightfoot	1 of 4 					2011-10-27
