

[bookmark: _GoBack]Answers on specification, Design by Contract, Spec#
David Lightfoot, October 2011
1)
static int What0(int x)
/* requires x >= 0;
 ensures result * result <= x && x < (result+1)*(result+1);
*/
a)	What is the value of What0(26)?
5
b)	What does the precondition mean?
x must not be negative
c)	Why do we have that particular pre-condition?
Can’t satisfy post-condition if x < 0
d)	What does the post-condition mean?
Result is ‘integer square root’ of x.
e)	What does What0 do?
Returns integer square root of x
2)
What does the following method do?
static void What1 (int [] a)
/* requires a != null
ensures forall {int i in (0:a.Length); a[i] == 0};
*/
Note: in Spec#, int k in (m: n) means m <= k < n
Sets every element of a to zero.
3)
static float AverageLength(string[] s)
/* requires ??;
 ensures result = (float) (sum {int k in (0: s.Length); s[k].Length()}) / s.Length;
*/
a)	What does AverageLength do?
Returns average length of strings in s
b)	What should its pre-condition be? (Pay particular attention to possible null values).
requires s != null && s.Length != 0 && forall {int i in (0: s.Length); s[i] != null};
c)	How could you rewrite AverageLength in Spec# to make use of facilities for protection against null values?
	static float AverageLength(string! [] ! s)

4)
static int Min(int[] a)
/* requires a != null;
ensures forall {int i in (0:a.Length); min <= a[i]};
*/
{ int min = 0;
 for (int j = 0; j != a.Length; j++)
 if (a[j] < min) min = a[j];
 return min;
}
a)	Does the implementation satisfy the specification of Min?
No, only works if minimum in a is less than zero.
b)	If not, how would you fix it?
Tempting to fix by setting initial value of min to MAX_VALUE, but specification is wrong. If array is empty this returns a value that is not in the array.
c) 	Does the implementation that consists simply of the body
	return MIN_VALUE; // the smallest value of type int
	satisfy the specification above?
yes! We have not specified that the value returned is one of those in the array.
d)	Write an improved specification.
static int Min(int[] a)
/* requires a != null && a.Length != 0;
ensures forall {int i in (0..a.Length); min <= a[i]} && exists {int j in (0:a.Length); min == a[j]};
*/

5)
static int What2(int[] a, int x)
/* requires a != null;
ensures 	(0 <= result && result < a.Length &&
 exists {int k in (0: a.Length); a[k] == x} && a[result] == x) ||
			(!exists {int k in (0: a.Length); a[k] == x} && result == -1);
*/
a)	What does the pre-condition of What2 mean?
a must not be null
b)	What does the post-condition of What2 mean?
Returns an index to an occurrence of x in a, or -1 if there is none
	Given the declaration:
int[] a= {15, 20, 19, 30, 25, 19, 22, -4};
c)	What is the value of What1(a, 40)?
-1
d)	What is the value of What1(a, 19)?
2 or 5

6)
static int What3(int[] a, int x)
/* requires a != null;
 ensures 	(0 <= result && result < a.Length &&
exists {int k in (0: a.Length); a[k] == x} &&
forall {int j in (0: result); a[j] != x } && a[result] == x) ||
	(!exists {int k in (0: a.Length); a[k] == x} && result == -1);
*/
What3 is the same as What2 but with an extra term in the post-condition:
forall {int j in (0: result); a[j] != x }
a)	What does this additional term mean?
Returns index of first (lowest-indexed) occurrence of x, or -1 if none.

b)	Which is easier to implement, What1 or What2?
What2 is no harder to implement if you do the obvious linear search from start of array.

7)
static int What4(int[] a, int x)
/* requires a != null && forall {int i in (0: a.Length-1); a[i] <= a[i+1]};
ensures
(0 <= result && result < a.Length &&
 	exists {int k in (0: a.Length); a[k] == x} &&
forall {int j in (0: result); a[j] != x } && a[result] == x) ||
	(!exists {int k in (0: a.Length); a[k] == x} && result == -1);
*/
What4 is the same as What3 but with an extra term in the pre-condition:
forall {int i in (0: a.Length-1); a[i] <= a[i+1]};
a)	What does this additional term mean?
a is in ascending order of increasing index.
b)	How does the presence of this extra term affect a possible implementation?
Can do this by a binary search. But note need for lowest-indexed – can be done by simple choice of algorithm.

Assertions in Java
We can simulate the effect of requires and ensures in languages that have assertion handling. Eiffel has a similar feature, with the same keywords. In Java we can use the built-in method:
assert Boolean-expression;
or
assert Boolean-expression: string;
When the program is run if the Boolean expression is true when the assert method is executed then nothing happens. If it is false a message is issued, including the string used in the method call and the program halts. Assertions are very good documentation because they assert what you believe should be true at a particular point in the program. if your assertion is incorrect then you soon get to know about it and can fix the program.
We can simulate the effect of requires and ensures in languages implementations that do not have those features:
Where you have requires pre;, include assert pre; as the first statement of the methods.
Where you have ensures post;, put assert post; just before the return statement or the textual end of the method.
Note however, that there is no provision for quantifiers, such as forall, exists, sum, so we will need to write our own methods to simulate the effect of these.
Enabling assertion handling in Netbeans:
By default assertion handling is turned off and your calls to assert are ignored. To turn on assertion handling:
· Select menu File
· Select menu item Project Properties
· Select category node Run
· Select text field VM Options
· Type -ea or -enableassertions
You can check that assertion checking is working by running the
a program with assert false; as the first line of the main method.

8)	
static boolean isSmallest (int []a,int min)
that returns true if and only if min is the smallest value in a.
a)	Write a specification for isSmallest.
static boolean isSmallest (int []a,int min)
/* requires a != null;
 ensures result ==
 forall {int i in (0..a.Length); min <= a[i]} && exists {int j in (0:a.Length); min == a[j]};

9)
Use your method isSmallest to write a Java implementation of Min using Java assertions to achieve the effect of the requires and ensures of your corrected specification of Min.
static int Min(int[] a)
/* requires a != null && a.Length != 0;
ensures forall {int i in (0..a.Length); min <= a[i]} && exists {int j in (0:a.Length); min == a[j]};
*/
{
 int val;
 assert a != null && a.Length != 0: “pre-condition failure”;
 val = a[0];
 for (int i = 1; i < a.Length; i++)
 if (a[j] < min) min = a[j];
 assert isSmallest(a, val): “post-condition failure”;
 return val;
}

D Lightfoot	1 of 6 					2011-10-27
