
Advanced Compiler Construction Prof. Dr. H. Mössenböck

Project 2: Compiler Optimizations on an IR
The goal of this project is to write a compiler that translates a program of the toy language Mini
to an intermediate representation (a CFG with IR instructions), performs some optimizations
on it and finally does register allocation by graph coloring. Code generation is not part of this
project. The project can either be implemented in Java or in C#.
Mini is a simple Pascal-like language with integer variables and (multi-dimensional) arrays. It
has the usual kinds of statements and expressions. There are no procedures. The syntax of Mini
is as follows:

Mini = "PROGRAM" {VarDecl} "BEGIN" StatSeq "END" ".".
VarDecl = "VAR" {IdListDecl ";"}.
IdListDecl = ident {"," ident} ":" Type.
Type = ident | "ARRAY" number "OF" Type.
StatSeq = Statement {";" Statement}.
Statement =
 [Designator ":=" Expression
 | "IF" Condition "THEN" StatSeq {"ELSIF" Condition "THEN" StatSeq} ["ELSE" StatSeq] "END"
 | "WHILE" Condition "DO" StatSeq "END"
 | "READ" Designator
 | "WRITE" Expression
].
Condition = Expression Relop Expression.
Expression = [Addop] Term {Addop Term}.
Term = Factor {Mulop Factor}.
Factor = Designator | number | "(" Expression ")".
Designator = ident {"[" Expression "]"}.
Relop = "=" | "#" | "<" | ">" | ">=" | "<=".
Addop = "+" | "-".
Mulop = "*" | "/" | "%".

The lexical structure of SL is:
ident = letter {letter | digit}.
number = digit {digit}.

Integer types are written as INTEGER. Comments start with "//" and go to the end of the line.
The project consists of the following subtasks:

1. Scanner and Parser
Use the compiler generator Coco/R (http://ssw.jku.at/coco/) to generate a scanner and a parser
for Mini. Write a small main program Mini.java that allocates the scanner and the parser, calls
the parser and prints the number of errors that were detected. For example, you can try your
compiler on the following sample program:

PROGRAM
VAR
 a: ARRAY 10 OF ARRAY 10 OF INTEGER;
 i, j: INTEGER;
BEGIN
 //--- read some data
 i := 0;
 WHILE i < 10 DO
 j := 0;
 WHILE j < 10 DO READ a[i][j]; j := j + 1 END;
 i := i + 1
 END;

http://ssw.jku.at/coco/

 //--- add 1 to every value
 i := 0;
 WHILE i < 10 DO
 j := 0;
 WHILE j < 10 DO a[i][j] := a[i][j] + 1; j := j + 1 END;
 i := i + 1
 END
END.

2. Symbol Table Handling and Type Checking
Implement a symbol table that holds all declarations of a Mini programs as well as the types
of the variables. Although scopes are not really necessary in Mini, keep a Universe scope that
holds the type INTEGER. The only real scope is the one that holds the variables of the pro-
gram.
Add type checking for assignments, read/write statements, and expressions. Assignments are
only allowed for INTEGER values. The same holds for operands of expressions as well as for
the arguments of read/write statements.

3. Intermediate Representation
Extend your compiler so that it builds a control flow graph (CFG) for the statements of the
Mini program. The basic blocks should contain instructions similar to the ones discussed in
the lecture. Every instruction has 2 operands that can reference a variable, a constant or some
other instruction (see below). Some instructions have operands that are null (denoted by "-").
0 neg x neg - negate
1 plus x plus y plus
2 minus x minus y minus
3 times x times y times
4 div x div y divide
5 rem x rem y remainder
6 cmp x cmp y compare
7 phi x phi opds phi instruction
8 ld x load y load
9 lr - lr y load register y (only used after removal of phis)
10 lc - lc y load constant y (only used after removal of phis)
11 st x store y store y to the memory address denoted by x
12 ass x ass y assign y to the variable x
13 read - read - read integer value
14 write - write y write integer value y
15 ret - ret - return (used at the end of the program)
16 br - br y branch to block y
17 blt x blt y branch to block y if x references "a cmp b" and a < b
18 beq x beq y branch to block y if x references "a cmp b" and a == b
19 bgt x bgt y branch to block y if x references "a cmp b" and a > b
20 bge x bge y branch to block y if x references "a cmp b" and a >= b
21 bne x bne y branch to block y if x references "a cmp b" and a != b
22 ble x ble y branch to block y if x references "a cmp b" and a <= b
The instructions should be generated in SSA form as discussed in the lecture. While generat-
ing the CFG, build also its dominator tree.
You can assume that all variables reside in a single stack frame to which the special register
FP points. Arrays also reside in this stack frame. Their elements are accessed as ld x, y, where
x denotes a base register and y denotes either an offset or an index register.

Implement also methods that print the CFG and its instructions so that you can check their
correctness. For example, for the following program:

PROGRAM
VAR
 i, sum: INTEGER;
 a: ARRAY 10 OF INTEGER; // adr(a) = FP-48
BEGIN
 i := 0;
 WHILE i < 10 DO READ a[i]; i := i + 1 END;
 i := 1; sum := 0;
 WHILE i < 10 DO sum := sum + (a[i] - a[i-1]); i := i + 1 END;
 WRITE sum;
END.

The output could be as follows:
1 ------------- left:3 -- right:2 -- dom:0 -- pred:
3 ------------- left:4 -- right:0 -- dom:1 -- pred: 1
 4: i := 0
4 --- while --- left:5 -- right:6 -- dom:3 -- pred: 3 5
 6: i PHI [i4 i19]
 16: ST , a
 8: i6 CMP 10
 9: (8) BGE 6
5 ------------- left:0 -- right:4 -- dom:4 -- pred: 4
 11: RD
 12: i6 * 4
 13: FP + -48
 14: (13) + (12)
 15: ST (14), (11) a
 18: i6 + 1
 19: i := (18)
 20: BR 4
6 ------------- left:7 -- right:0 -- dom:4 -- pred: 4
 22: i := 1
 23: sum := 0
7 --- while --- left:8 -- right:9 -- dom:6 -- pred: 6 8
 25: i PHI [i22 i41]
 26: sum PHI [sum23 sum39]
 27: i25 CMP 10
 28: (27) BGE 9
8 ------------- left:0 -- right:7 -- dom:7 -- pred: 7
 30: i25 * 4
 31: FP + -48
 32: LD (31), (30) a
 33: i25 - 1
 34: (33) * 4
 35: FP + -48
 36: LD (35), (34) a
 37: (32) - (36)
 38: sum26 + (37)
 39: sum := (38)
 40: i25 + 1
 41: i := (40)
 42: BR 7
9 ------------- left:2 -- right:0 -- dom:7 -- pred: 7
 44: WRT sum26
2 ------------- left:0 -- right:0 -- dom:1 -- pred: 9 1
 45: i PHI [i25 ?]
 46: sum PHI [sum26 ?]
 17: ST , a
 47: RET

4. Optimizations
Using the IR of the previous step, implement copy propagation and global common subex-
pression elimination as discussed in the lecture. This should result in the following CFG:

1 ------------- left:3 -- right:2 -- dom:0 -- pred:
3 ------------- left:4 -- right:0 -- dom:1 -- pred: 1
4 --- while --- left:5 -- right:6 -- dom:3 -- pred: 3 5
 6: i PHI [0 (18)]
 8: i6 CMP 10
 9: (8) BGE 6
5 ------------- left:0 -- right:4 -- dom:4 -- pred: 4
 11: RD
 12: i6 * 4
 13: FP + -48
 14: (13) + (12)
 15: ST (14), (11) a
 18: i6 + 1
 20: BR 4
6 ------------- left:7 -- right:0 -- dom:4 -- pred: 4
7 --- while --- left:8 -- right:9 -- dom:6 -- pred: 6 8
 25: i PHI [1 (40)]
 26: sum PHI [0 (38)]
 27: i25 CMP 10
 28: (27) BGE 9
8 ------------- left:0 -- right:7 -- dom:7 -- pred: 7
 30: i25 * 4
 31: FP + -48
 32: LD (31), (30) a
 33: i25 - 1
 34: (33) * 4
 36: LD (31), (34) a
 37: (32) - (36)
 38: sum26 + (37)
 40: i25 + 1
 42: BR 7
9 ------------- left:2 -- right:0 -- dom:7 -- pred: 7
 44: WRT sum26
2 ------------- left:0 -- right:0 -- dom:1 -- pred: 9 1
 45: i PHI [i25 ?]
 46: sum PHI [sum26 ?]
 47: RET

5. Register Allocation
This step is optional. Do it if you have enough time and if you are interested in the details of
register allocation implementation.
Use the algorithm shown in the lecture to build an interference graph. While traversing the
CFG you should also eliminate unused instructions. Color the graph assuming that you have
30 registers available (2 registers are reserved as scratch registers).
After graph coloring try to coalesce the operands of phi instructions so that the phi instruc-
tions become unnecessary. Then remove the phi instructions, possibly inserting register
moves (i.e., lr or lc instructions) at the end of the predecessor blocks.
Finally print out the CFG using the assigned registers for the operands of the instructions. The
result should look as follows:

Output Corresponds to

1 -------------
3 -------------
 R3: LC 0 R3 = 0
4 -------------
 R0: R3 CMP 10 4: R0 = R3 CMP 10
 : R0 BGE 6 BGE R0, 6
5 -------------
 R2: RD R2 = RD
 R0: R3 * 4 R0 = R3 * 4
 R1: FP + -48 R1 = FP - 48
 R0: R1 + R0 R0 = R1 + R0
 : ST R0, R2 mem[R0] = R2
 R3: R3 + 1 R3 = R3 + 1
 : BR 4 BR 4
6 -------------
 R3: LC 1 6: R3 = 1
 R4: LC 0 R4 = 0
7 -------------
 R0: R3 CMP 10 7: R0 = R3 CMP 10
 : R0 BGE 9 BGE R0, 9
8 -------------
 R0: R3 * 4 R0 = R3 * 4
 R1: FP + -48 R1 = FP - 48
 R2: LD R1, R0 R2 = mem[R1 + R0]
 R0: R3 - 1 R0 = R3 - 1
 R0: R0 * 4 R0 = R0 * 4
 R0: LD R1, R0 R0 = mem[R1 + R0]
 R0: R2 - R0 R0 = R2 - R0
 R4: R4 + R0 R4 = R4 + R0
 R3: R3 + 1 R3 = R3 + 1
 : BR 7 BR 7
9 -------------
 : WRT R4 9: WRT R4
2 -------------
 : RET RET

