
JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Str. 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Improving
Vectorization of
Fold Loops in a
Dynamic Compiler

Bachelor’s Thesis
to confer the academic degree of

Bachelor of Science
in the Bachelor’s Program

Informatik

Author
Christoph Aigner

Submission
Institute for System
Software

Thesis Supervisor
DI Lukas Makor

Assistant Thesis Supervisor
Dr. Gergö Barany (Oracle
Labs)

October 2023

Abstract

Parallelization is the next big step in the quest to further increase the performance

of applications [1], but writing parallel code is a quite cumbersome task that might

increase program complexity and development times signi�cantly. Therefore, to utilize

the parallelization capabilities of modern hardware despite non parallel code, the compiler

can automatically transform linear code to a parallel representation in a process called

(auto-)vectorization. A well suited target for vectorization are loops because sometimes

multiple loop iterations can be executed in parallel resulting in a signi�cant reduction in

execution time.

Loops that accumulate a set of data into a single value are called fold loops. These

loops are especially tricky to vectorize because the current loop iteration depends on

the previous one. To still be able to extract parallelism, the calculation needs to be

transformed using mathematical properties like associativity, commutativity and dis-

tributivity.

This work contributes to the Graal Compiler, a highly optimizing dynamic compiler

that already contains an extensive loop vectorizer, to improve the already existing imple-

mentation for vectorizing fold loops that contain a multiplication and an addition, also

called hash code like loops. The new implementation does not only yield a performance

improvement for loops that were vectorized previously (see section 6.1), but also allows

this optimization to be used not only on multiplications and additions, but also on other

arithmetic operations, namely left-shifts, bit-wise XORs and bit-wise ORs. Additionally,

this work expands the Graal Compiler's capabilities to vectorize fold loops that contain

subtractions, which are neither associative nor commutative.

i

Kurzfassung

Der nächste Schritt im Bestreben nach immer schnelleren Ausführungszeiten von Pro-

grammen ist, mehrere Berechnungen nebenläu�g auszuführen. Das Schreiben von solch

parallelem Programmcode ist jedoch mit vielen Hindernissen wie zum Beispiel deutlich

komplexerem Code verbunden, die die Fehlerrate und die Entwicklungszeit deutlich er-

höhen. Um nun trotzdem von den Möglichkeiten der parallelen Datenverarbeitung zu

pro�tieren, die moderne CPUs bieten, kann ein Compiler automatisch linearen Code in

parallelen Code überführen. Dieser Prozess wird auch "automatische Vektorisierung"

genannt. Schleifen eignen sich meist besonders gut für automatische Vektorisierung, da

hier oft mehrere Durchläufe nebenläu�g ausgeführt werden können.

Schleifen, ein einziges Ergebnis aus einer Menge von Daten errechnen, werden Re-

duktionsschleifen genannt. Solche Reduktionsschleifen sind besonders schwierig zu vek-

torisieren, da immer ein Schleifendurchlauf auf dem Ergebnis des Vorausgegangenen

beruht. Für das Umformen der gegebenen Berechnung in eine parallelisierbare Form

werden mathematische Eigenschaften wie Assoziativität, Kommutativität und Distribu-

tivität benötigt.

Diese Arbeit beschreibt einen Beitrag zum Graal Compiler, einem stark optimieren-

den dynamischen Compiler, der schon automatisch geeignete Schleifen vektorisiert. Die

Vektorisierungsfunktion für Reduktionsschleifen mit einer Multiplikation und einer Addi-

tion (auch genannt Hash-Code ähnliche Schleifen) wurde im Zuge dieser Arbeit verbessert,

um einerseits schnellere Ausführungszeiten für bereits vorher vektorisierte Schleifen zu

erzielen (siehe Abschnitt 6.1) und andererseits diese Optimierung auch auf andere arith-

metische Operationen wie Linksverschiebung, bitweises XOR und bitweises OR anwend-

bar zu machen. Zusätzlich wurde der Graal Compiler um die Fähigkeit erweitert, Re-

duktionsschleifen mit Subtraktionen, welche weder assoziativ noch kommutativ sind, zu

vektorisieren.

ii

Contents

1 Introduction 1

2 Background 3

2.1 GraalVM . 3

2.1.1 A Java Virtual Machine . 3

2.1.2 Graal Intermediate Representation 3

2.2 Parallelization . 4

2.2.1 Free Lunch is Over . 4

2.2.2 Task-Parallel Programming . 5

2.2.3 Data Parallelism . 5

2.3 Single Instruction Multiple Data . 6

2.3.1 Intel Advanced Vector Instructions 6

2.3.2 Automatic Vectorization . 7

2.3.2.1 Linear-Code Vectorization 8

2.3.2.2 Loop Vectorization . 8

3 Fold Loops 10

3.1 Fold Loop Patterns . 10

3.2 Accumulator Path . 11

3.3 Non-associative Rings with Identity . 12

3.3.1 Integers . 14

3.3.2 Floating Point Numbers . 14

4 Vectorizing Mixed Arithmetic Fold Loops 16

4.1 Hash Code Like Loops . 16

4.2 Previous State . 16

4.3 Improving the Vectorization of Hash Code Like Loops 17

4.4 Generalizing Hash Code Loops . 20

4.4.1 Detecting Arbitrary Multipliers . 21

4.4.2 Shifts and XORs . 23

4.4.3 Shifts and ORs . 24

5 Subtractions in Fold Loops 26

5.1 Problem Statement . 26

5.2 Basic Idea . 26

iii

5.3 Accumulator Path Restriction . 27

5.3.1 Lifting the Accumulator Path Restriction 28

5.3.2 Vectorizing Arbitrary Add-Sub-Patterns 29

5.4 Subtractions in Hash Code Like Loops . 30

6 Evaluation 32

6.1 Sunk multiplication . 32

6.2 Generalized hash code like loops . 34

7 Conclusion 36

iv

1 Introduction

As the generational increase in straight line (non parallel) execution speed starts to

decrease [1], alternative methods of increasing execution performance need to be lever-

aged. One of those methods is parallelism. In addition to conventional multi-threading /

multi-processing, a simpler form of parallelism is data parallelism. Data parallel pro-

cessing takes place within a single thread and just processes multiple elements of data in

parallel to increase data throughput signi�cantly.

With the advent of data parallel Single Instruction Multiple Data (SIMD) instruc-

tions in desktop computing facilitated by Intel's MMX Instruction Set Architecture (ISA)

extension to its x86 architecture released in 1996 [2], new possibilities for software op-

timizations emerged. Today, the leading ISAs in desktop and high power computing

provide ISA extensions for SIMD instructions.

Writing SIMD code manually is a very cumbersome task. Usually writing such code

locks the developed software to a speci�c platform that supports the used instructions

which therefore requires the developer to strike a balance between platform indepen-

dence, development e�ort and performance. Therefore, most developers opt to write

purely scalar code which leaves signi�cant performance gains on the table. Automat-

ically transforming the scalar code to SIMD code through compiler optimizations is a

great way of leveraging SIMD instructions while maintaining platform independence on

the source code level. This process is called automatic vectorization.

A Just-In-Time (JIT) compiler has the unique opportunity to take platform inde-

pendent intermediate code and transform it to a highly optimized machine code repre-

sentation specially tailored to the target machine. This allows the compiler to leverage

instructions for optimizations that may not always be available but are available on the

target machine. Additionally, old intermediate code may receive signi�cant performance

increases by executing it using newer JIT compilers which employ better optimizations

than the ones available at the time of shipping the original piece of software.

A common target for vectorization are loops, because the same short code snippet is

executed repeatedly. Therefore, data parallelisms may arise that can be processed with

SIMD instructions. Using SIMD instructions, multiple iterations of the target loop may

be executed in parallel. This thesis focuses on a special category of loops called fold-loops

or reduce-loops which are loops that accumulate elements of a set of data (usually an

array) into a single value. These loop shapes are especially hard to vectorize due to

restrictions that arise when reshaping the calculation to extract data parallelism that are

discussed in section 3.3.

1

This work contributes to the loop vectorizer of the Graal Compiler, a highly opti-

mizing JIT compiler for Java Bytecode, that generates data parallel code for such loops.

After an introduction to vectorization and fold-loops (section 2), the di�culties and

restrictions when vectorizing fold-loops are presented in section 3. Following this, im-

provements made to the vectorization of fold loops containing 2 di�erent operations are

presented in section 4. Further, this thesis tackles the problem of vectorizing fold loops

containing subtractions in section 5. Lastly, in section 6 the contributions are evaluated

and benchmark results are presented.

2

2 Background

This chapter introduces some terms and concepts used in this thesis. It starts out pre-

senting Java and GraalVM in section 2.1, followed by an introduction into parallelism in

section 2.2 and �nally introducing SIMD and vectorization in section 2.3.

2.1 GraalVM

Java is an object oriented, garbage collected programming language designed with plat-

form independence in mind. It was originally developed by Sun Microsystems in 1995

[3] which later was acquired by Oracle. Java is designed to be compiled to a general

intermediate representation called Java Bytecode (abbreviated to "bytecode" in the fol-

lowing text). To execute a given bytecode program, a run-time, often in the form of a

virtual machine (VM), is needed. The Java Virtual Machine (JVM) executes the given

bytecode by either interpreting the bytecode or by translating the byte to machine code

at run time (also called Just-In-Time (JIT) compilation) to achieve signi�cantly better

performance.

2.1.1 A Java Virtual Machine

There is an abundance of high performance JVMs available for users to run Java pro-

grams. The most popular of them is the open source reference implementation by Oracle

called Java HotSpot VM. GraalVM is a JVM developed by Oracle Labs based on HotSpot

and like HotSpot, the GraalVM employs tiered compilation. This means, execution of

the given bytecode starts in an interpreter. During interpretation pro�ling data about

the program is collected. If a bit of code is executed often enough, the code is compiled

with a quick JIT compiler called C1 or client compiler. Finally, especially hot spots of

the program are compiled with a highly optimizing JIT compiler using the pro�ling data

collected earlier which in HotSpot is called C2 or server compiler.

The GraalVM replaces the C2 JIT compiler with its own implementation called the

Graal Compiler, which is written in Java. Additionally, GraalVM provides support for

many di�erent languages like JavaScript, Ruby, Python or R via the Tru�e Language

Implementation Framework [4].

2.1.2 Graal Intermediate Representation

Graal uses an intermediate representation (IR) that has the structure of a directed graph

in static single assignment (SSA) form. It is a superposition of a control �ow graph (CFG)

3

and a data �ow graph (DFG) [5]. The CFG is modeled by nodes having successors while

the DFG is modeled by nodes having inputs. To enable traversing the CFG or DFG in

any direction, all nodes connected via successor edges or input edges are also linked in

the reverse direction via usage edges and predecessor edges.

Listing 1: Example of simple if clause [5]

1 ...

2 if (cond) {

3 result = value1 + value2;

4 } else {

5 result = value2;

6 }

7 return result;

If

Begin Begin

End End

Merge

Return

PHI

Addition

value1 value2

cond. . .

Figure 1: IR of the code from listing 1

To further illustrate the GraalIR, a short example taken from the paper "An In-

termediate Representation for Speculative Optimizations in a Dynamic Compiler" [5] is

presented in listing 1. Figure 1 contains the IR generated for the piece of code in listing 1.

The successor edges that represent control �ow are red downward edges while the black

upward pointing edges are the input edges that denote value �ow.

2.2 Parallelization

A common and very powerful strategy to increase application performance is to leverage

the hardware's capability to process data simultaneously.

2.2.1 Free Lunch is Over

In the famous article "The Free Lunch Is Over" [1] which was released in 2005 the end

of free performance gain (without needing to change the software, the so called "free

performance lunch") by ever improving hardware is proclaimed. Straight-line execution

speed starts to approach hard physical limits like the speed of light. As improvement

of straight-line execution speed slows down, the logical next step to further increase

4

computing performance is to start processing data in parallel. To still deliver a substantial

uplift in performance across generations of hardware, modern day chips provide increasing

capabilities of parallelization.

The main issue with gaining performance via parallelization is, that it does come at

the cost of signi�cantly increased complexity of the software because in order to leverage

these new capabilities, parallelism needs to be baked into the software. Therefore, to meet

ever increasing requirement in computational capacity, a shift in how to write e�cient

and fast code is inevitable.

Additionally, parallelization is implemented in many di�erent, sometimes unique,

ways on di�erent platforms and systems. To perfectly leverage the theoretical maxi-

mum performance, developers often times need to write platform dependent code. This

leads to signi�cantly increased development times because the same piece of software

often needs to run on a wide variety of hardware and operating system con�gurations

therefore requiring sometimes substantial parts of the software to be written for multiple

con�gurations.

2.2.2 Task-Parallel Programming

The most well known form of parallelism in programs is task-parallel programming, where

an application is separated into multiple tasks that run in parallel in separate threads

or processes on multiple CPU cores. These tasks may share data but have independent

execution �ows. This logical separation needs to be done in software. Parallel program-

ming comes with a large set of unique pitfalls to be considered by the developer, which

signi�cantly increases the complexity of the software.

Additionally, multi-threading / multi-processing comes with a considerable compu-

tational overhead when creating and managing multiple threads and processes. Finally,

special algorithms that consist of a parallelizable computational pattern need to be used

to be able to pro�t from concurrent programming.

2.2.3 Data Parallelism

Data Parallelism in contrast revolves around the idea of processing batches of data at

once. Those sets of similar data are called vectors. Instead of iterating over the scalar

elements of the vector and processing one at a time, modern time CPUs often o�er

instructions which can execute the same instruction on a set of values at once. These

instructions are called Single Instruction Multiple Data (SIMD) instructions. Still, these

5

instructions do have their limitations as the number of elements that are processed in

parallel cannot be any arbitrary number but is usually restricted to a small power of 2.

Data parallelism can be leveraged by Graal to prolong the availability of free perfor-

mance lunch. It can be used to further improve single threaded performance. Generating

data parallel code from scalar code is, while still a challenging task in its own right, much

easier than automatically rewriting an application to run on multiple threads, because

data parallelism does not have to consider concepts like locking of resources. Further-

more, adding data parallelism to the generated code does not come with the signi�cant

overhead in managing and scheduling multiple threads.

Additionally, because Java programs do not ship as binaries already compiled to ma-

chine code but rather only compiled to the platform independent intermediate language

Java Bytecode, even older programs can pro�t from improvements in the Graal JIT

compiler without the need to be changed or recompiled.

Data parallel code will be called vector code or vectorized code for the rest of this

thesis.

2.3 Single Instruction Multiple Data

Data parallelism is commonly implemented in hardware as SIMD instructions. Nearly

all modern day high power instruction set architectures (ISAs) like x86, ARM or IBM

PowerPC de�ne an extension for SIMD instructions.

2.3.1 Intel Advanced Vector Instructions

The ISA with the highest share in the high power computing market is the Intel x86

architecture. This ISA de�nes multiple di�erent extension for SIMD instructions like

MMX, 3DNow!, EMMX, multiple versions of Streaming SIMD Extensions (SSE) and

Advanced Vector Extensions (AVX). This introduction to vector instructions will focus

on the latter two of those ISA extensions.

SSE de�nes 8 additional 128 bit wide vector registers called XMM0-XMM7. The

64bit extension to Intel x86 called AMD64 or x86-64 adds 8 additional vector registers

XMM8-XMM15 to CPUs that also support SSE. AVX extends the width of the vector

registers to 256 bits calling them YMM0-YMM15 while still only allowing �oating point

arithmetic. AVX2 includes support for integer instructions on these vector registers. The

AVX512 extension, additionally to increasing the register width to 512 bit, again doubles

the vector register count resulting in 32 vector registers ZMM0-ZMM31. The lower parts

of these vector registers can still be addressed via XMM0-XMM31 or YMM0-YMM31.

6

Most current x86 based CPUs support AVX2 which o�ers instructions that interpret

the content of vector registers as a packed set of smaller data types like single or double

precision �oating point numbers or integers of various sizes and executing the same

operation on each recognized element. Using these instructions (which will be called

vector instructions in this thesis) we can easily implement data parallelism as described

before.

VPADDD XMM2, XMM0, XMM1

XMM 0

31
...
0

63
...
32

95
...
64

127
...
96

XMM 1

31
...
0

63
...
32

95
...
64

127
...
96

XMM 2

31
...
0

63
...
32

95
...
64

127
...
96

Figure 2: Add packed double-word integers from XMM0, XMM1 and store in XMM2

To further illustrate the functionality of SIMD instructions, �gure 2 represents the

AVX2 instruction VPADDD XMM2, XMM0, XMM1 (Add packed double-word integers from

XMM0, XMM1 and store in XMM2) [6]. Using this instruction, the 128 bit wide SIMD

register XMM0 is interpreted as 4 32 bit wide integers that are added to the 4 32 bit

wide integers in XMM1, Finally, the result is then stored in XMM2. The 4 independent

additions in this calculation are done in parallel, therefore (depending on the micro

architecture) taking similar time as a single scalar addition.

2.3.2 Automatic Vectorization

Automatic vectorization is a technique where an optimizing compiler automatically de-

rives a vectorized representation from source code written using scalar operations. This

process can yield signi�cant performance gains [7]. Automatic vectorization can generally

be separated into two di�erent approaches, linear-code vectorization and loop vectoriza-

tion.

7

2.3.2.1 Linear-Code Vectorization

The �rst one is linear-code vectorization where the compiler tries to �nd inherent data

parallelisms in the source code and generates vector code for the given calculation. In

combination with careful loop unrolling, this technique can be used to vectorize loops. For

example GCC only relies on a linear-code superword-level parallelism (SLP) vectorizer

which, in conjunction with loop unrolling, that is aware of possible later vectorization,

can vectorize loops e�ectively [8]. LLVM and Graal feature separate linear-code and loop

vectorizers [9].

Linear-code vectorization can not only be used to transform entire loops to a data

parallel form but also to vectorize smaller suitable scalar calculations like for example

matrix multiplications, or loads of 4 adjacent values from memory.

2.3.2.2 Loop Vectorization

Since loops that execute the same operation on a set of data, like an array, are a common

target for vectorization [10], vectorizers that speci�cally handle the transformation of

entire loops have been devised. The advantage of building a loop vectorizer over simply

combining loop unrolling with a linear-code vectorizer is, that vectorization does not rely

on loop unrolling to guess the appropriate number of iterations to unroll. Additionally,

a loop vectorizer that takes the entire loop into consideration may be able to more easily

extract parallelism that may require extensive transformation of the loop body, like mixed

arithmetic folds (see section 4). Such loop shapes might be harder to detect if the loop

has been unrolled prior.

If a loop is vectorized, multiple iterations of the given loop can be executed at once

by conceptually splitting the given array into smaller parts that �t into vector registers

and iterating over those batches using vector instructions instead of iterating over the

scalar elements of the array.

8

Listing 2: Exemplary code representing a vectorized map calculation

1 int[] A = new int [10];

2 int[] B = new int [10];

3 int[] C = new int [10];

4 initArrays(A, B);

5

6 // scalar computation

7 for (int i = 0; i < a.length; i++) {

8 C[i] = A[i] + B[i];

9 }

10

11 // vectorized computation

12 int i;

13 for (i = 0; i + 4 <= a.length; i += 4) {

14 C[<i, i+1, i+2, i+3>] = A[<i, i+1, i+2, i+3>] + B[<i, i+1, i+2, i+3>];

15 }

16 for (; i < a.length; i++) {

17 C[i] = A[i] + B[i];

18 }

The example shown in listing 2 is written in a Java-like pseudo code where <1, 2,

3, 4> represents a vector of 4 elements. Operations on these vectors are implied to

be executed element wise and in parallel. As can be seen in the scalar version of the

loop, all elements of arrays A and B are added and the result is stored in array C. While

the scalar version processes just 1 element per loop iteration, the vectorized loop can

process 4 elements per iteration by executing the addition on 4 elements of the given

arrays simultaneously. Due to the fact that the given arrays can be of any length and

not just multiples of the vector length, an extra scalar loop is necessary to process the

remaining elements that did not �ll a vector that could be processed in the vector loop.

This additional loop is called a scalar tail loop. In the given example, elements 0 through

7 would be processed within the vector loop while the remaining elements 8 and 9 would

be handled by the scalar tail loop.

Vectorizing loops comes at the cost of signi�cantly increased code size but the maxi-

mum theoretical performance gain, when large sets of data are processed in this fashion,

is a factor close to the vector length.

9

3 Fold Loops

The following chapter introduces the fundamentals of fold loops (sections 3.1 and 3.2).

Further in section 3.3, the problem of vectorizing fold loops containing �oating point

arithmetic is discussed.

3.1 Fold Loop Patterns

Map and fold loops are common loop patterns for manipulating sets of data. Map loops

take a set of data and execute an operation on each individual element thereby producing

a new set of data (see the example in listing 2). Fold loops on the other hand do not

produce a new set of values like map loops, but they rather fold the given data set into a

single scalar value called the accumulator via a given computation. This thesis will focus

on fold loops, since these are often more complex to vectorize and need special treatment.

Listing 3: Calculating the sum of all elements in an array

1 long sum = 0;

2 for (int i = 0; i < array.length; i++) {

3 sum = sum + array[i];

4 }

Listing 4: Counting the number of non null elements in an array

1 int count = 0;

2 for (int i = 0; i < array.length; i++) {

3 if (array[i] != null) {

4 count ++;

5 }

6 }

Listing 5: Calculating a simple hash code

1 int hash = 1;

2 for (int i = 0; i < array.length; i++) {

3 hash = hash * 31 + array[i];

4 }

Fold loop patterns appear in various di�erent contexts. A few common examples for

fold loops are a simple sum of an array (e.g. listing 3), counting how many elements of

an array satisfy certain criteria (e.g. counting the number of null pointers in an array of

objects as shown in listing 4), or calculating a simple hash code (e.g. listing 5).

10

In contrast to the map loop discussed in listing 2, the computation in fold loops does

depend on the result of previous loop iterations. Therefore, additional transformation

steps and restrictions on vectorizability are required.

A B C D E F G H I J K L M N

A

B

C

D

A+E

B+F

C+G

D+H

A+F+I

B+G+J

C+H+K

D+I+L

Sum
A-L

Sum
A-M

Sum
A-N

vector loop horizontal combination scalar tail

Figure 3: Vectorized sum calculation

Figure 3 shows an example for a vectorized calculation of the sum of all array elements

(see listing 3) for an array of length 14 containing elements A through O and with a vector

length of 4. For vectorization, the accumulator variable sum is extended to an accumu-

lator vector. In each element of the vector every nth + i element (n = vector length,

i = element index) of the array is accumulated independently. Once there are fewer

than n elements left to process, the vector loop can not be executed anymore. To obtain

a scalar result from the accumulator vector, the elements of the vector are combined

horizontally using the operation de�ned in the body of the original loop. Finally, the

remaining elements are processed using a scalar tail loop.

3.2 Accumulator Path

Listing 6: Fold loop containing arithmetic not on the accumulator path

1 int accumulator = 5;

2 for (int i = 0; i < a.length; i++) {

3 accumulator = accumulator + a[i] * b[i];

4 }

11

PHI

Addition

Multiplication

P(0) P(1)C(5)

loop entry control

Figure 4: Diagram of the loop body of listing 6

Figure 4 shows the body of the loop in listing 6. Control �ow for the loop as well as

loading of array elements is omitted for simplicity sake. P(0) represents the element of

array a needed for the current loop iteration. P(1) represents the same for array b. C(5)

represents the constant 5. The recursive calculation marked in red is the accumulator

path in the loop.

The accumulator path is the recursive path starting and ending at a PHI controlled

by the loop begin.

As can be seen, the multiplication in not contained in the accumulator path, therefore

this multiplication can conceptually be extracted into a separate map loop leaving a

simpler minimized version of the fold loop that only contains the accumulator path.

Due to this possible minimization, the restrictions on fold loops discussed in this

thesis exclusively apply to the calculation along the accumulator path.

3.3 Non-associative Rings with Identity

Vectorizing scalar fold loops may require various properties found in non-associative

rings with identity. For vectorizing loop shapes similar to listing 3 or listing 4, the �rst

3 conditions in de�nition 1 are needed while for vectorizing listing 5 the conditions 1, 2,

3, 5 and 7 are needed (see section 4.1). For vectorizing folds containing subtractions as

described in section 5.2, conditions 1 through 4 are required.

De�nition 1 (Non-associative Ring with Identity). A non-associative ring with

identity [11, 12] is de�ned as a set S and two operations ◦ and ∗ that satisfy the

following conditions:

12

1. ∀a, b, c ∈ S : (a ◦ b) ◦ c = a ◦ (b ◦ c)
The operation ◦ needs to be associative.

2. ∀a, b ∈ S : a ◦ b = b ◦ a
The operation ◦ needs to be commutative.

3. ∃e◦ ∈ S : ∀a ∈ S : e◦ ◦ a = a ◦ e◦ = a

The operation ◦ needs to have an identity element.

4. ∀a ∈ S : ∃b ∈ S : a ◦ b = b ◦ a = e

Each element needs to have an inverse in S with respect to the operation ◦.

5. ∀a, b, c ∈ S : (a ◦ b) ∗ c = (a ∗ c) ◦ (a ∗ b)
The operations ◦ and ∗ need to be right-distributive.

6. ∀a, b, c ∈ S : a ∗ (b ◦ c) = (a ∗ b) ◦ (a ∗ c)
The operations ◦ and ∗ need to be left-distributive.

7. ∃e∗ ∈ S : ∀a ∈ S : e∗ ∗ a = a ∗ e∗ = a

The operation ∗ needs to have an identity element.

De�nition 2 (Subring). Let (A, ◦, ∗) be a ring like structure. A subring [13] of A is a

subset B ⊆ A such that:

1. e◦ ∈ B ∧ e∗ ∈ B

The identity elements for both operations need to be contained in B.

2. ∀x ∈ B : ∃y ∈ B : x ◦ y = e◦

Each element in B needs to have an inverse element with respect to ◦ in B.

3. ∀x, y ∈ B : x ◦ y ∈ B ∧ x ∗ y ∈ B

B needs to be closed over ◦ and ∗.

For the set of all real numbers in conjunction with addition and multiplication it

can be proven that this combination is a non-associative ring with identity with the

additive neutral element e+ = 0 and the multiplicative neutral element e· = 1. But

because computers can not represent any arbitrary real number, we can not assume

the afore mentioned properties for the set of all numbers representable in computer

arithmetic. Two representations for numbers commonly used in digital computing are

integer numbers of �xed length and �oating point numbers as de�ned in the IEEE 754

standard.

13

3.3.1 Integers

It can be proven that the set of all integers Z in combination with addition and multi-

plication is a non-associative ring with identity with the additive neutral element e+ = 0

and the multiplicative neutral element e· = 1.

Though due to the limitation in size to a power of two in the number of digits in

binary representation, integers in digital arithmetic are e�ectively taken modulo 2b (where

b = bitcount) with each operation, thereby forming a subring to the ring of integers Z
with addition and multiplication.

This holds because the set of integers Z2b always includes the additive neutral element

0 and the multiplicative neutral element 1 for bitcount ∈ N∗. Furthermore, Z2b always

contains the inverse element y to an element x with respect to addition which can be

calculated via y = (2b − x)%2b. Finally, because the result of every operation is taken

modulo 2b resulting in an element in Z2b , Z2b is closed under addition and multiplication.

Therefore we can conclude that (Z2b , +, ·) is a subring to (Z, +, ·). With this, we can

assume all properties of non-associative rings with identity for digital integer arithmetic.

3.3.2 Floating Point Numbers

Floating point numbers according to IEEE 754 are just mere approximations of the

numbers they represent. Additionally, IEEE 754 de�nes some bit patterns as Not a

Number (NaN). Furthermore, the standard de�nes +0 and -0 as well as positive and

negative in�nity. Due to accumulating rounding errors, IEEE 754 is not associative or

distributive with respect to addition and multiplication [14].

Compilers must preserve the programs semantics through the entire optimization

process. Therefore, folds containing �oating point arithmetic can not be vectorized. Some

compilers like the LLVM compiler provide an option called -ffast-math that enables

treating �oating point operations as if they were a non-associative ring with identity.

This allows those compilers to optimize �oating point arithmetic more aggressively and

to vectorize folds containing �oating point arithmetic. GraalVM does not provide this

option. If only the highly optimizing compiler vectorizes such a computation, the same

code might yield di�erent results depending on whether the code is executed in the

interpreter, compiled using the C1 compiler or compiled using the highly optimizing

compiler. This might result in signi�cant problems for other parts of the code during

execution.

To further emphasize that folds containing �oating point arithmetic can not be vec-

torized, an example that computes the sum on an array of �oats exhibiting a standard

14

fold loop pattern is presented in listing 7. At the start, an array of �oats is �lled with

pseudo-random �oating point values. First the result for the standard scalar implemen-

tation is calculated. Then the result of a calculation resembling the vectorized version of

the scalar calculation is computed. This calculation is not necessarily vectorized in the

compiler. Finally, both results are printed to the standard output.

Listing 7: Demonstration of �oating point rounding error incurred by vectorization

1 Random rng = new Random (0 xCAFEBABE);

2 float[] data = new float[0xBEEF];

3 for (int i = 0; i < data.length; i++) {

4 data[i] = rng.nextFloat () / data.length;

5 }

6

7 // scalar computation

8 float sumS = 0;

9 for (int i = 0; i < data.length; sumS += data[i++]) ;

10

11 // vectorized computation

12 float[] acc = new float[] {0.0f, 0.0f, 0.0f, 0.0f};

13 int i;

14 for (i = 0; i + 4 <= data.length; i += 4) {

15 acc [0] += data[i];

16 acc [1] += data[i + 1];

17 acc [2] += data[i + 2];

18 acc [3] += data[i + 3];

19 }

20 float sumV = acc[0] + acc [1] + acc[2] + acc [3];

21 for (; i < data.length; sumV += data[i++]) ;

22

23 System.out.printf("scalar: %.10f\n" +

24 "vectorized: . . %.10f\n", sumS , sumV);

Running the Java code snippet from listing 7 on GraalVM CE version 17.0.6 generates

the following output:

scalar: 0.5002341270

vectorized: . . 0.5002374649

As can be seen in the output, the results of the scalar calculation and the vectorized

calculation start to diverge at the 6th digit past the decimal point. This is due to

the scalar computation picking up a di�erent amount of �oating point rounding error

than the vectorized calculation. Therefore, these two calculations can not be considered

semantically equal which implies that this optimization can not be used for �oating point

values.

15

4 Vectorizing Mixed Arithmetic Fold Loops

This chapter presents the additions made to the Graal Compiler with respect to the

vectorization of fold loops that contain more than 1 unique arithmetic operation. After

a quick introduction to hash code like loops, an improvement to the existing vectoriza-

tion algorithm is presented in section 4.3. Subsequently, the vectorization algorithm is

expanded to handle arbitrary multipliers (in section 4.4.1) and to also handle bit-wise

exclusive or, bit-wise or and left-shift (in sections 4.4.2 and 4.4.3).

4.1 Hash Code Like Loops

Mixed arithmetic folds are de�ned as fold loops containing multiple di�erent arithmetic

operations along the accumulator path. A widely used example for such loops are fold

loops that contain a multiplication and an addition along the accumulator path, so called

hash code like loops.

Listing 8: The method body of the method Arrays#hashCode(int[] a) taken from the

Java Standard Library

1 if (a == null) return 0;

2 int result = 1;

3 for (int element : a) {

4 result = 31 * result + element;

5 }

6 return result;

In listing 8 the method Arrays#hashCode(int[]) is presented. The �rst operation

in the accumulate statement we call the multiplicative operation while the operation

directly after the multiplicative operation we call the secondary operation of a hash code

like calculation.

This computational pattern is not only used in simple and quick hash codes, but

also in a family of hashes considered cryptographically safe called Poly1305 [15]. There,

among other minor changes that do not alter the computational pattern, instead of a

constant, a key is used for the multiplication to derive the hash.

4.2 Previous State

The previous implementation of vectorizing these hash code like loops is based on a mas-

ter's thesis called "Idiom-driven innermost loop vectorization in the presence of cross-

iteration data dependencies in the HotSpot C2 compiler" by William Sjöblom [16] which

16

proposes a solution for vectorizing single statement loops with data dependence on pre-

vious iterations of the loop. The multiplication constant inside the loop was limited to

be 2n ± 1 where n ∈ N. Additionally, only the combination of a single multiplication

and a single addition was recognized as vectorizable, despite other similar loop shapes

containing di�erent operations occurring in real world code.

horizontal combination
and scalar tail

loop entry control

C< , , , ...>

P< , ..., > C< , ..., > C< , , ...>

Vector Multiplication Vector Multiplication

Vector Addition

PHI

Figure 5: Previous method of vectorizing hash code like loops

Figure 5 depicts the main vectorized loop of the version of the calculation in the loop

body in Arrays#hashCode(int[]) obtained via the previous algorithm for vectorization.

It only depicts the calculation inside the main vector loop obtained via vectorization.

Control �ow, associated checks, as well as loading of array elements are omitted for

simplicity sake. The parameter vector depicted by P < 0, ..., n− 1 > represents a vector

of array elements to be processed in the given loop iteration, while vectors with constant

elements are depicted as C < 1, 2, ... >. The vector length n is a variable dependent

on the capabilities of the target architecture. The value init is the initial value the

accumulator variable contains before the hash code like loop is entered, for example

init = 1 for listing 8.

4.3 Improving the Vectorization of Hash Code Like Loops

As presented in section 4.2, the previous implementation for vectorizing hash code like

loops uses 2 multiplications and an addition inside the loop. This can be improved upon

by sinking the left vector multiplication found in �gure 5 below the loop.

To demonstrate the transformation of the calculation needed to extract data paral-

lelism in hash code like loops, a simple example will be used. The following example

calculates the hash of an array a of length 6 and a vector length of 2 according to the

17

implementation of Arrays#hashCode from the Java Standard Library presented in list-

ing 8. For demonstration purposes the array length is chosen as a multiple of the vector

length to omit the scalar tail needed to handle arrays of arbitrary length in the example.

result =

= (((((1 · 31 + a[0]) · 31 + a[1]) · 31 + a[2]) · 31 + a[3]) · 31 + a[4]) · 31 + a[5]

Original shape of the calculation

= 1 · 316 + a[0] · 315 + a[1] · 314 + a[2] · 313 + a[3] · 312 + a[4] · 311 + a[5] · 310

Using right-distributivity to eliminate parentheses and adding a ·310 using the

existence of a neutral element for the right side of the multiplication

= a[0] · 315 + a[2] · 313 + a[4] · 311 + 1 · 316 + a[1] · 314 + a[3] · 312 + a[5] · 310

Using the associative and commutative properties of addition to reorder the

calculation

= 0 · 317 + a[0] · 315 + a[2] · 313 + a[4] · 311+

1 · 316 + a[1] · 314 + a[3] · 312 + a[5] · 310

Using the existence of an additive identity element to add to the calculation to

bring the number of operands up to a number divisible by the chosen vector

length

= (0 · 316 + a[0] · 314 + a[2] · 312 + a[4] · 310) · 311+

(1 · 316 + a[1] · 314 + a[3] · 312 + a[5] · 310) · 310

Again using right-distributivity and additive associativity to extract one

multiplication per line. The previous implementation did not include this step.

= (((0 · 312 + a[0]) · 312 + a[2]) · 312 + a[4]) · 311+

(((1 · 312 + a[1]) · 312 + a[3]) · 312 + a[5]) · 310

Using right-distributivity to gain a uniform pattern

To obtain a vectorized calculation from the last calculation, each line can be in-

terpreted one element of a SIMD register and each expression in parentheses can be

interpreted as an iteration of the loop. Therefore, each loop iteration in the example

consists of a single vector multiplication with 312 followed by a vector addition of the

next array elements. After the loop the accumulator vector needs to be multiplied with

the vector < 311, 310 > while horizontal combination is done using addition. All remain-

18

ing elements that did not �t into a SIMD register will get taken care of using the usual

scalar tail.

result = (((0 · 311) · 312 + a[0] · 311) · 312 + a[2] · 311) · 312 + a[4] · 311+

(((1 · 310) · 312 + a[1] · 310) · 312 + a[3] · 310) · 312 + a[5] · 310

Using right-distributivity to gain a uniform pattern from the 4th step of the

equation presented above.

As hinted earlier, the previous implementation did not perform step 5 of the transfor-

mation, which then results in the calculation presented right above. Here, the familiar

pattern of 2 multiplications and one addition inside the loop, like already shown in �g-

ure 5, emerges.

a[0]
a[1]

0
1

= 0·31⁷ + a[0]·31⁵ + a[2]·31³ + a[4]·31¹
1·31⁶ + a[1]·31⁴ + a[3]·31² + a[5]·31⁰

31²
31²

31²
31²

a[2]
a[3]

a[4]
a[5]

31¹
31⁰

31²
31²

Figure 6: Illustration of the vector loop

Figure 6 features an illustration of the vector loop of the previous example for the new

algorithm. Marked in blue is the initial state of the accumulator vector. Marked in green

are 3 iterations of the vector loop. As can be seen, in each loop iteration, the previous re-

sult is multiplied by the vector < 312, 312 > (this multiplication is implied to be element-

wise) and subsequently added to a vector of array elements. Finally, marked in purple,

the result of the vector loop is multiplied by the vector < 311, 310 >. To now obtain a

scalar result, all elements of the vector result are summed up to obtain the scalar re-

sult 0 · 317 + a[0] · 315 + a[2] · 313 + a[4] · 311 + 1 · 316 + a[1] · 314 + a[3] · 312 + a[5] · 310

which is exactly the fourth step in the previous example.

19

Listing 9: Vectorized hash like computation

1 // vector loop

2 int i;

3 IntVector accVector = <0, ..., 0, init >;

4 for (i = 0; i + vlen < a.length; i += vlen) {

5 IntVector temp = accVector * <c^vlen , c^vlen , ...>;

6 accVector = temp + a[<i, i+1, ..., i+(vlen -1)>];

7 }

8

9 // horizontal combination

10 accVector = accVector * <c^(vlen -1), ..., c^1, c^0>;

11 int result = sum(accVector);

12

13 // scalar tail

14 for (; i < a.length; i++) {

15 result = result * c + a[i];

16 }

Listing 9 depicts the resulting calculation for a hash like fold loop for an integer array

in a Java-like pseudo code. The vector length vlen and the constant c are left as variables

to demonstrate the generic nature of this reshaped calculation.

As can be seen, the vector loop that processes the majority of the calculation contains

only a single multiplication and one addition. The horizontal combination with addition

is preceded with the multiplication that has been sunk out of the loop.

During literature search I found out that this improvement of sinking one multiplica-

tion below the loop has already been done before. The family of cryptographic hashing

algorithms called Poly1305 use a similar pattern of multiplication and addition in a loop

to calculate a hash using a key. A SIMD algorithm for calculating the Poly1305 hash

that extracts the multiplication from the loop has been presented in a paper called "Vec-

torization of Poly1305 Message Authentication Code" by Martin Goll and Shay Gueron

in 2015 [17].

4.4 Generalizing Hash Code Loops

Investigations on the Java Standard Library revealed that hash code like loop patterns

do not only occur with a constant multiplier of 2n ± 1 in combination with addition but

rather come in a variety of di�erent �avors. The aim of this contribution is to open up the

detection and vectorization of hash code like loop patterns to also include patterns that

do not closely match the implementation in Arrays#hashCode(int[]) (see listing 8).

20

4.4.1 Detecting Arbitrary Multipliers

Because multiplications are quite costly operations [18], in Graal multiplications with

constants are optimized to a faster representation consisting of shifts, negates, additions

and subtractions immediately upon insertion into the IR. These optimizations range

from simply replacing the multiplication with a single left-shift (if the multiplication

constant is a power of 2) to quite complex patterns of 2 left-shifts and a subtraction

if the constant multiplier consists of all ones followed by all zeros (as demonstrated in

listing 10). The implementation of this can be found on the public Graal GitHub in the

MulNode#canonical method [19].

Listing 10: Canonicalization of a multiplication

1 // original calculation

2 result = input * 0b01111000;

3

4 // optimized calculation

5 result = (input << 7) - (input << 3);

To accurately detect such optimized versions of multiplications with constants, a new

algorithm was devised. In contrast to the previous detection algorithm that works in a

bottom up fashion, the new detection works in a top down manner following usage edges

along the data �ow in the IR graph.

Since a possible multiplier of a hash code like loop is always a direct usage of the accu-

mulator, detecting the accumulator in a top down fashion allows for additional arithmetic

in the loop that uses the hash code like computation.

The detection starts at the accumulator and in a �rst step all usages inside the loop

that are multiplications and left-shifts are collected. If the accumulator is used in more

than 1 multiplication or more than 2 left-shifts, the algorithm used for vectorizing hash

code like loops can not handle this. Therefore, such loops are already rejected while

detecting the constant multiplier.

The most simple case of a successful detection is, when just a single multiplication is

detected. In this case no optimization was made to the multiplication and the detection

is trivial. If the input that is not the accumulator is a constant, this value is the desired

constant multiplier, if the input is not a constant, no constant multiplier was found and

the detection of a vectorizable hash code like loop terminates.

The method MulNode#canonical(Stamp, ValueNode, long, NodeView) [19] can pro-

duce 6 di�erent optimized shapes which are presented in �gure 7. The constant inputs

n and k for the given left-shift operations in �gure 7 are incorporated into the node

description to reduce the total node count in order to simplify the resulting graphs.

21

Accumulator

Left-Shift (n)

Addition

Accumulator

Left-Shift (n)

Subtraction

Accumulator

Left-Shift (n)

Addition

Left-Shift (k)

Accumulator

Left-Shift (n)

Subtraction

Left-Shift (k)

Accumulator

Left-Shift (n)

Accumulator

Left-Shift (n)

Negate

(b) multiplier (a) multiplier (c) multiplier

(d) multiplier (e) bits n and k of the multiplier are set (f) bits n-1 to k of the multiplier are set

Figure 7: Possible shapes of a multiplication with a constant

If a singular left-shift by a constant is found as a direct usage of the accumulator

inside the loop, it can be concluded that if a multiplication with a constant is present, it

is of the form presented in �gure 7 (a) through (d). To determine the exact multiplier,

the operation using the left-shift's result needs to be evaluated. If this operation is a

negate, the calculation shape is of type (b) and the desired constant can be computed

via const = −(2n).

If the operation using the left-shift's result is an addition, the shape of the calculation

could be (a) or (c). To determine if the addition is part of the optimized multiplication,

it needs to be checked if the input edge not connecting this operation to the previous

left-shift, connects to the accumulator. If this is the case, the desired constant can be

calculated via const = 2n + 1, else the addition is not part of the multiplication and the

constant is const = 2n following the calculation shape presented in (a).

If the operation using the left-shift's result is a subtraction, the detection works similar

to the handling of an addition described above. The constant can either be calculated

via const = 2n − 1 or const = 2n based on if a shape of type (a) or (d) is detected.

If 2 left-shifts with constants are detected as direct usages the accumulator inside

the loop, the multiplication can be of type (e) or (f). If these two left-shifts do not

have a singular common usage, no constant factor is detected and the search for an

optimizable, hash code like calculation is terminated. If, however, the common usage of

22

the two left-shifts is an addition, the detected shape is (e) constant can be calculated via

const = 2n+2k. This results in a constant with exactly two bits (at n and k) set like for

example 0b10100 for n = 4 and k = 2.

If the common usage of the two constant left-shifts is subtraction, the detected shape

is (f) and the constant is calculated via const = 2n − 2k. The optimization leading to a

shape like presented in (f) is applicable for constants like 0b11100 for which n = 5 and

k = 2. The bits n− 1 to k are set, the rest are zeros.

Because this algorithm does not traverse the entire accumulator path, the remaining

operations along the accumulator path need to be checked separately to ensure the loop

actually represents a vectorizable hash code like calculation.

With this new algorithm for detecting arbitrary multipliers in hash code like loops

implemented, the Graal loop vectorizer now can vectorize hash code like loops containing

any constant multiplication in combination with addition as the secondary operation.

4.4.2 Shifts and XORs

To apply the vectorization algorithm presented in section 4.3, the properties 1, 2, 3,

5 and 7 of non-associative rings with identity (de�nition 1) are needed. Therefore, to

vectorize left-shifts (in formulas abbreviated to '<<') as the multiplicative operation

in combination with bit-wise XORs (in formulas presented as 'XOR') as the secondary

operation of a hash code like loop, these properties need to be proven in combination

with Z.
For the set S from de�nition 1 take Z, for ◦ take XOR and for ∗ take <<. The bit-wise

XOR operation is de�ned as an operation where, in binary representation, every bit is

joined separately via the logical XOR operation which has the logic table presented in

table 1.

XOR 0 1

0 0 1

1 1 0

Table 1: Logic table for XOR

1. (associativity): The logical XOR operation is associative as can be deduced using

the logic table 1. Because the bit-wise XOR operation over Z consists of multiple

independent logical XOR operations it can be concluded that therefore also bit-wise

XOR is associative.

23

2. (commutativity): The logical XOR operation is commutative and using the argu-

ment presented in point 4.4.2 this property can be derived for bit-wise XOR.

3. (XOR identity): The identity element for bit-wise XOR is 0.

5. (right-distributivity): The k-th bit of the result of the calculation x << y can be

expressed as (x << y)k = xk−y. Additionally, the k-th bit of the result of the

calculation x XOR y can be expressed as (x XOR y)k = xk XOR yk.

Using these representations, the calculation for the k-th bit of the left side of the

equality in de�nition 1.5 can be written as

((a XOR b) << c)k = (a XOR b)k−c = ak−c XOR bk−c

while the calculation for the right side of the calculation can be written as

((a << c) XOR (b << c))k = (a << c)k XOR (b << c)k = ak−c XOR bk−c

As can be seen, the �nal results of the calculations match, therefore it can be

concluded, bit-wise XOR and left-shift are right-distributive.

7. (left-shift identity): Although there is no general identity element for left-shift, the

identity element for the right side of the left-shift operation is 0. This su�ces for

the transformation presented in section 4.3.

Finally, it needs to be proven that the afore proven properties also hold for the

subset Z2n with n = bitcount. It can be said that 0 ∈ Z2n . Additionally, x XOR y

produces a result of at maximum 2max(xlen,ylen)+1−1 which is an element of Z2n because

xlen ≤ n ∧ ylen ≤ n. Finally, because the top bits of the result get cut in left-shift, the

result is also always in Z2n .

With this proven, mixed arithmetic fold loops with a left-shift and bit-wise XORs

can be vectorized using the same algorithm used for multiplication and addition.

4.4.3 Shifts and ORs

To prove the afore mentioned vectorization does work with a left-shift and bit-wise OR

operations, a very similar argument to the one presented in section 4.4.2 can be made.

OR 0 1

0 0 1

1 1 1

Table 2: Logic table for OR

24

A look at the logic table of the logical OR operation found in table 2 reveals that, in

contrast to the logical XOR operation, the logical OR operation (and by extension also

the bit-wise OR operation) can not be reversed. This, however, does not pose a problem

since this optimization does not use inverses. All necessary properties of the algebraic

structure (Z2n , OR, <<) can be proven in the same way as presented for the bit-wise

XOR operation in section 4.4.2.

Given all properties proven above, we can now vectorize all hash code like loops con-

taining not only a multiplication combined with addition, but also a left-shift combined

with bit-wise XOR and bit-wise OR.1

12 examples for uses in the JDK are:

1. https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/j

ava.base/share/classes/java/io/ObjectStreamClass.java#L1861-L1863

2. https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/j

ava.base/share/classes/jdk/internal/jimage/decompressor/CompressIndexes.java#L99-L

103

25

https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/java.base/share/classes/java/io/ObjectStreamClass.java#L1861-L1863
https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/java.base/share/classes/java/io/ObjectStreamClass.java#L1861-L1863
https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/java.base/share/classes/jdk/internal/jimage/decompressor/CompressIndexes.java#L99-L103
https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/java.base/share/classes/jdk/internal/jimage/decompressor/CompressIndexes.java#L99-L103
https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/java.base/share/classes/jdk/internal/jimage/decompressor/CompressIndexes.java#L99-L103

5 Subtractions in Fold Loops

This chapter presents a possible approach to vectorize fold loops containing a mixture of

additions and subtractions. First, in section 5.2 a simple approach is presented that has

been implemented into the Graal Compiler. In the second part, in section 5.3.1, a more

complex approach to lift the restrictions incurred by the simple approach is presented.

5.1 Problem Statement

To perform the transformations necessary to extract data parallelism presented in sec-

tion 3.1, the operations on the accumulator path need to be associative, commutative

and have a neutral element. The subtract operation is neither associative nor commuta-

tive, therefore loops containing a subtraction can not be vectorized using the standard

algorithm for fold loops. This work adds an algorithm to the Graal Loop Vectorizer to be

able to handle subtractions in fold loops under certain conditions presented in section 5.3.

5.2 Basic Idea

Listing 11: Fold loop containing a subtraction

1 int acc = init;

2 for (int i = 0; i < a.length; i++) {

3 acc = acc - a[i];

4 }

Looking at the loop in listing 11 the loop contains the operation acc = acc - a[i]

which can be rewritten as acc = acc + (-a[i]). With this, the accumulator path only

contains a single addition which is associative and commutative while the extracted

map operation consists of a single negate operation. This allows the calculation to be

reordered arbitrarily therefore enabling vectorization similar to a fold loop containing

only additions.

26

Listing 12: Vectorized fold loop containing a subtraction

1 // vector loop

2 int i;

3 IntVector accV = <init , 0, ..., 0>;

4 for (i = 0; i + vlen < a.length; i += vlen) {

5 accV = accV - a[<i, i+1, ..., i+(vlen -1)>];

6 }

7

8 // horizontal combination

9 int acc = sum(accV);

10

11 // scalar tail

12 for (; i < a.length; i++) {

13 acc = acc - a[i];

14 }

After transforming the calculation to extract data parallelism, the map operation

can be reintegrated into the fold calculation. This results in a vector loop containing

subtractions, the horizontal combination being done with addition instead of subtraction

and the scalar tail resorting to the original loop as shown in listing 12.

The fact that the subtraction from the original scalar loop is e�ectively preserved

in the vector loop, therefore not interfering with other arithmetic, and the fact that

both fold loops containing additions and subtractions are combined horizontally using

addition, allow subtractions and additions to be mixed arbitrarily in fold loops for the

loop to be still vectorizable.

5.3 Accumulator Path Restriction

The keen reader might have noticed a signi�cant limitation of the approach presented

previously in section 5.2.

Listing 13: Accumulator path traversing the right input edge of a subtraction

1 int acc = init;

2 for (int i = 0; i < a.length; i++) {

3 acc = a[i] - acc;

4 }

27

loop entry control

init P(0)

Subtraction

PHI

Figure 8: Accumulator path of the loop in listing 13

This simple approach does not allow the accumulator path to traverse the right input

edge of a subtraction. The example loop presented in listing 13 uses the accumulator

as a subtrahend, therefore the accumulator path traverses such a right input edge as

can be seen in �gure 8. Looking at an example input for this calculation using an array

of length 6, the calculation result = a[5]− (a[4]− (a[3]− (a[2]− (a[1]− (a[0]− init)))))

can be obtained, which can not be transformed as easily to extract data parallelism as

the approach presented in section 5.2 might suggest.

5.3.1 Lifting the Accumulator Path Restriction

To lift this accumulator path restriction, a more complex algorithm needs to be de-

vised. Revisiting the last example in section 5.3, the calculation can be transformed

to result = a[5]− a[4] + a[3]− a[2] + a[1]− a[0] + init using the existence of an additive

inverse element. As can be seen, every second component of the calculation is inverted.

Recognizing this pattern, this calculation can now be transformed further assuming a

vector length of 2.

result = a[5]− a[4] + a[3]− a[2] + a[1]− a[0] + init

initial calculation

= 0 − a[0]− a[2]− a[4] +

init+ a[1] + a[3] + a[5]

reordering the calculation and adding 0 in between

= (0 + a[0] + a[2] + a[4]) · (−1) +

(init+ a[1] + a[3] + a[5]) · (1)

negating every other line in the calculation starting from the top to

eliminate the subtractions

28

In the last expression, each line can again be interpreted as an element of the accu-

mulator vector while each column of additions can be interpreted as an iteration of the

vector loop. The horizontal combination of the vector elements is preceded by inverting

every other vector element starting at index 0. This vector can be expressed generically

as < (−1)vlen−1, ..., (−1)1, (−1)0 > or < −1, 1,−1, 1, ... >. Finally the vector elements

are combined via addition.

The similarities between this approach to vectorize subtractions in fold loops and the

approach to vectorizing hash code like loops presented in section 4.3 are not coincidental.

The calculation accumulator = a[i] - accumulator inside the loop can be rewritten

as accumulator = accumulator * -1 + a[i]. This means, a fold loop with an accu-

mulator path traversing the right edge to a subtraction can be seen as a hash code like

loop with addition and a constant multiplier of −1 and it can be therefore vectorized

using the same algorithm.

5.3.2 Vectorizing Arbitrary Add-Sub-Patterns

To now be able to vectorize any fold loop containing an arbitrary combination of additions

and subtractions, the calculation inside the loop needs to be resolved in a manner that

the accumulator path only contains additions and negations. A possible algorithm to do

that would be to collect all inputs to the accumulator path starting at the accumulator

itself while inverting every input to the accumulator path that traverses the right edge of

a subtraction to have the accumulator path only consist of additions. If the accumulator

path itself traverses the right edge of a subtraction, every previous input including the

accumulator itself is negated.

At the end, the accumulator path would either only consist of additions which would

be vectorizable using the approach presented in section 5.2, or it would contain a singular

negation of the accumulator at the start followed by only additions which could be vec-

torized using the approach presented in section 5.3.1. With this, arbitrary combinations

of additions and subtractions could be vectorized in fold loops.

29

This approach is illustrated by the following example. The steps are annotated below

the transformations of the equation. Each annotation starts with the operation along

the accumulator path that is handled next.

acc = (c[i]− ((a[i]− acc) + b[i]))− d[i]

= (c[i]− ((a[i] + (−acc)) + b[i]))− d[i]

[a[i]− acc]: extract the negation of the accumulator

= (c[i]− (a[i] + (−acc) + b[i]))− d[i]

[acc+ b[i]]: noting to do for additions

= (c[i] + (−a[i]) + acc+ (−b[i]))− d[i]

[c[i]− acc]: accumulator path traverses the right edge to a subtraction,

therefore all previous inputs to the accumulator path need to be inverted

= c[i] + (−a[i]) + acc+ (−b[i]) + (−d[i])

[acc− d[i]]: accumulator path traverses the left edge to a subtraction, therefore

only the negation of the right input is extracted.

The �nal version of the equation is a sequence of additions where the accumulator is

not negated. Therefore, like discussed above, this sequence can be vectorized with the

approach presented in section 5.2 after this transformation has been applied.

This algorithm, however, has not been implemented into the Graal Compiler because

tests on real world code showed that the accumulator path almost never traverses the

right edge to a subtraction in a possibly vectorizable fold loop (0 occurrences in all JDK

classes). Therefore almost all folds containing subtractions can be vectorized using the

simple approach presented in section 5.2 which was implemented into the Graal Compiler.

An example taken from the JDK for a subtraction in a fold loop that is now considered

vectorizable can be found in the java.awt.GridBagLayout class.2

5.4 Subtractions in Hash Code Like Loops

The �nal contribution of this thesis to the Graal Compiler is an implementation to vector-

ize hash code like loops that have a subtraction as a secondary operation or as additional

arithmetic below the hash code like calculation along the accumulator path. While sub-

tractions below the hash code like calculation will be vectorized automatically using the

2https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/jav

a.desktop/share/classes/java/awt/GridBagLayout.java#L1405-L1406

30

https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/java.desktop/share/classes/java/awt/GridBagLayout.java#L1405-L1406
https://github.com/openjdk/jdk/blob/3bcfac18c39d83bf876787e7ce422831bab0db2f/src/java.desktop/share/classes/java/awt/GridBagLayout.java#L1405-L1406

simple approach presented in section 5.2, subtractions as the secondary operation to a

hash code like calculation need special treatment.

If the accumulator path traverses the left input edge, the negation can simply be

extracted and later reintegrated into the calculation, in the same fashion as explained

earlier in section 5.2. If the accumulator path traverses the right edge to the subtraction

below the multiplicative operation, instead of inverting the accumulator, the multiplica-

tion constant can be inverted to achieve the same result. This can be seen in the �nal

paragraph of section 5.3.1. After this point the secondary operation is considered to be

a simple addition and the hash code like computation is vectorized according to this new

shape.

31

6 Evaluation

Finally, some of the afore mentioned improvements for hash code like loops contributed

to the Graal Compiler will be evaluated.

For the following benchmarks, 2 systems were used. The �rst machine contains

"11th Gen Intel Core i7-1165G7" CPU which implements the Intel Tiger Lake micro

architecture for the AMD64 instruction set (from here on forth called the "AMD64

system"). The second machine is a server system that contains a "AppliedMicro X-Gene

3 APM883832-X3" CPU which implements Ampere Computing's Skylark architecture

for the AArch64 instruction set (from here on forth called the "AArch64 system"). All

benchmarks were done by executing 15 warm-up iterations followed by 5 iterations where

the throughput is measured. The �nal result is computed by executing this routine 2

times and averaging the 10 measured iterations.

6.1 Sunk multiplication

0 100 200 300 400
Throughput (in mega op/s, larger is better)

AArch64

AMD64

117.33

408.857

117.324

404.778

sunk multiplication previous implementation

Figure 9: Hash code benchmark with small int[]

32

0 250 500 750 1000 1250 1500 1750
Throughput (in kilo op/s, larger is better)

AArch64

AMD64

776.893

1772

684.224

1719.04

sunk multiplication previous implementation

Figure 10: Hash code benchmark with large int[]

I implemented the improved algorithm for vectorizing hash code like loops presented in

section 4.3 into the Graal Compiler.

Figures 9 and 10 show peak performance benchmarks for hashing integer arrays with

the optimization of sinking one multiplication below the loop presented in section 4.3.

For �gure 9 an integer array of length 4 is used while for �gure 10 an integer array of

length 2048 is used.

In �gure 9 the results for the previous implementation and the new algorithm de-

scribed earlier lay within margin of error. This makes sense since the array size used

is so small that the produced vector loop, that contains one less multiplication, is not

executed very often.

On large arrays an increase in performance on the AMD64 system by 3% and an in-

crease in performance on the AArch64 machine by 13.5% can be detected. Even though

a multiplication, which can be quite costly, has been extracted from the loop, the per-

formance increase did not match expectations. By taking a closer look at the previous

implementation of the vectorization of hash code like loops presented in �gure 5, it can

be seen that the two vector multiplications do not have a data dependency between

them. Therefore, pipelining in the CPU hides the latency added by the second vector

multiplication.

The vector multiplication instruction VPMULLD for up to 256-bit SIMD registers on

the Intel Tiger Lake micro architecture which is implemented in the "Intel 11th Gen Intel

Core i7-1165G7" processor used in the benchmarks in �gure 9 and 10, adds 10 clock cycles

of latency to the calculation while the execution of data independent multiplications can

be started at a rate of 1 instruction per clock cycle due to pipelining [18]. This means,

that sinking the multiplication below the loop reduces the clock cycles spent multiplying

33

inside the loop from 11 cycles to 10. Additionally, 10 clock cycles are added to the

calculation below the loop.

The AArch64 CPU model appears to have less sophisticated pipelining than the Intel

CPU, so it cannot hide the e�ects of the second multiplication in the loop to the same

extent as the Intel CPU which explains the di�erence in performance gain for the two

tested systems.

6.2 Generalized hash code like loops

Listing 14: Hash code like computation using shift and XOR

1 long acc = 0;

2 for (int i = 0; i < array.length; i++) {

3 acc = (acc << 8) | array[i];

4 }

0 50 100 150 200 250
Throughput (in mega op/s, larger is better)

XOR hash
263.018

212.358

new vectorizing implementation
previous non-vectorizing implementation

Figure 11: Benchmark for hash code like loop presented in listing 14

Hash code like fold loops with bit-wise OR or XOR are often used for constructing

int or long values from an array of bytes. In listing 14 such a combination is presented.

Figure 11 depicts the benchmark results for building a 64-bit integer value from a byte

array of length 8 using the calculation presented in listing 14. This benchmark was exe-

cuted on the AMD64 system The previous implementation that could not vectorize this

loop pattern managed a throughput of 212.4 mega op/s while the new implementation

that vectorizes this pattern managed to achieve a throughput of 263 mega op/s. This is

an improvement of 23.9% for this loop shape.

With the new implementation, on AVX512 this loop is vectorized with a vector length

of 4 because 4 64-bit integers �t into a 256-bit sized YMM SIMD register (a YMM register

is used in this case because the version of GraalVM used did not fully support 512-bit

wide ZMM registers yet). This results in a theoretical maximum performance increase of

4x which will not be achieved since SIMD instructions tend to be slightly slower than their

34

scalar counter parts. Additionally, horizontal combination and scalar tail add overhead

that harms performance quite signi�cantly for smaller array sizes.

In this particular example, the horizontal combination uses a vector multiplication

instead of a element wise shift for the multiplication below the loop presented in sec-

tion 4.3, because Intel AVX512 only de�nes an instruction for shifting all elements of a

vector by the same amount but not by di�erent amounts each. Therefore, we have to

resort to a vector multiplication which is a signi�cantly slower operation than a shift.

This results in the performance gain of this transformation to be only 23.9% for a byte

array of length 8.

35

7 Conclusion

While vectorizing loops can result in a signi�cant uplift in performance [7], extracting

data parallelism automatically from inherently scalar code is quite a challenging problem.

Often, signi�cant refactorization of the given calculation using various mathematical

properties is needed. The requirement of such properties (as discussed in section 3)

restricts the optimization possibilities for loop vectorization quite signi�cantly, especially

for fold loops.

An example for such restrictions is, that �oating point arithmetic is not associative

as shown in section 3.3.2. Therefore, these operations can not be vectorized in fold loops.

Tests on the loop vectorizer of the Graal compiler have shown that the previous im-

plementation was already very capable of vectorizing loops containing simple arithmetic

and sometimes even simple control �ow. The loops that can not yet be vectorized in the

Graal compiler are mostly more complex loops like for example fold loops that contain

multiple di�erent arithmetic operations, fold loops that contain operations that are not

associative or commutative and loops that contain more complex control �ow. Such loops

need special treatment to be vectorized. This thesis provides this special treatment for

some loops like hash code like loops and fold loops containing subtractions.

First, the problem of vectorizing fold loops containing mixed arithmetic was tack-

led. There, the previous implementation was improved by extracting one of the two

multiplications from the loop in section 4.3. Afterwards in section 4.4, the previous im-

plementation was expanded upon to allow arbitrary multipliers as well as a combination

of left-shifts and bit-wise XORs or bit-wise ORs.

Finally, a new implementation to vectorize subtractions, which are neither associative

nor commutative, was added to the Graal compiler in section 5.

36

References

[1] H. Sutter, �The free lunch is over,� Dr. Dobb's Journal, vol. 30, no. 3, 2005.

[2] Intel, �MMX technology technical overview,� 2023. Available at https://www.inte

l.com/content/dam/develop/external/us/en/documents/mmx-manual-tech-o

verview-140701.pdf.

[3] Oracle, �Moved by Java timeline,� 2020. Available at https://www.oracle.com/j

ava/moved-by-java/timeline/.

[4] T. Würthinger, C. Wimmer, A. Wöÿ, L. Stadler, G. Duboscq, C. Humer,

G. Richards, D. Simon, and M. Wolczko, �One VM to rule them all,� in ACM Sym-

posium on New Ideas in Programming and Re�ections on Software, Onward! 2013,

part of SPLASH '13, Indianapolis, IN, USA, October 26-31, 2013 (A. L. Hosking,

P. T. Eugster, and R. Hirschfeld, eds.), pp. 187�204, ACM, 2013.

[5] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and H. Mössen-

böck, �An intermediate representation for speculative optimizations in a dynamic

compiler,� in VMIL@SPLASH '13: Proceedings of the 7th ACM workshop on Vir-

tual machines and intermediate languages, Indianapolis, IN, USA, 28 October 2013

(C. Bockisch, M. Haupt, S. Blackburn, H. Rajan, and J. Gil, eds.), pp. 1�10, ACM,

2013.

[6] Intel, �Intel 64 and IA-32 architectures software developer's manual,� 2023. Available

at https://software.intel.com/en-us/download/intel-64-and-ia-32-archi

tectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.

[7] Konstantin, �Improving performance with simd intrinsics in three use cases,� 2020.

Available at https://stackoverflow.blog/2020/07/08/improving-performance

-with-simd-intrinsics-in-three-use-cases/.

[8] I. Rosen, �Auto-vectorization in GCC,� 2023. Available at https://gcc.gnu.org/

projects/tree-ssa/vectorization.html.

[9] LLVM Project, �Auto-vectorization in LLVM,� 2023. Available at https://llvm.o

rg/docs/Vectorizers.html.

[10] R. Allen and K. Kennedy, �Automatic translation of fortran programs to vector

form,� ACM Trans. Program. Lang. Syst., vol. 9, no. 4, pp. 491�542, 1987.

37

https://www.intel.com/content/dam/develop/external/us/en/documents/mmx-manual-tech-overview-140701.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/mmx-manual-tech-overview-140701.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/mmx-manual-tech-overview-140701.pdf
https://www.oracle.com/java/moved-by-java/timeline/
https://www.oracle.com/java/moved-by-java/timeline/
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://stackoverflow.blog/2020/07/08/improving-performance-with-simd-intrinsics-in-three-use-cases/
https://stackoverflow.blog/2020/07/08/improving-performance-with-simd-intrinsics-in-three-use-cases/
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html

[11] E. Weisstein, �Nonassociative algebra,� 2023. Available at https://mathworld.wo

lfram.com/NonassociativeAlgebra.html.

[12] E. Weisstein, �Unit ring,� 2023. Available at https://mathworld.wolfram.com/Un

itRing.html.

[13] E. Weisstein, �Subring,� 2023. Available at https://mathworld.wolfram.com/Su

bring.html.

[14] P. W. Markstein, �The new IEEE-754 standard for �oating point arithmetic,� in Nu-

merical Validation in Current Hardware Architectures, 6.1. - 11.1.2008 (A. A. M.

Cuyt, W. Krämer, W. Luther, and P. W. Markstein, eds.), vol. 08021 of Dagstuhl

Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für In-

formatik (IBFI), Schloss Dagstuhl, Germany, 2008.

[15] S. Bhattacharyya and P. Sarkar, �Improved SIMD implementation of poly1305,� IET

Inf. Secur., vol. 14, no. 5, pp. 521�530, 2020.

[16] W. Sjöblom, �Idiom-driven innermost loop vectorization in the presence of cross-

iteration data dependencies in the hotspot c2 compiler,� Master's thesis, Linköping

University, Software and Systems, 2020.

[17] M. Goll and S. Gueron, �Vectorization of poly1305 message authentication code,� in

12th International Conference on Information Technology - New Generations, ITNG

2015, Las Vegas, NV, USA, April 13-15, 2015 (S. Lati�, ed.), pp. 145�150, IEEE

Computer Society, 2015.

[18] A. Fog, �Instruction tables,� 2022. Available at https://www.agner.org/optimize

/instruction_tables.pdf.

[19] C. Häubl and A. Prokopec, �GraalVM MulNode#canonical,� 2017. Available at

https://github.com/oracle/graal/blob/a60993b28921cc1545dbd8975767701

b0f552aa4/compiler/src/jdk.internal.vm.compiler/src/org/graalvm/comp

iler/nodes/calc/MulNode.java#L129-L171.

38

https://mathworld.wolfram.com/NonassociativeAlgebra.html
https://mathworld.wolfram.com/NonassociativeAlgebra.html
https://mathworld.wolfram.com/UnitRing.html
https://mathworld.wolfram.com/UnitRing.html
https://mathworld.wolfram.com/Subring.html
https://mathworld.wolfram.com/Subring.html
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://github.com/oracle/graal/blob/a60993b28921cc1545dbd8975767701b0f552aa4/compiler/src/jdk.internal.vm.compiler/src/org/graalvm/compiler/nodes/calc/MulNode.java#L129-L171
https://github.com/oracle/graal/blob/a60993b28921cc1545dbd8975767701b0f552aa4/compiler/src/jdk.internal.vm.compiler/src/org/graalvm/compiler/nodes/calc/MulNode.java#L129-L171
https://github.com/oracle/graal/blob/a60993b28921cc1545dbd8975767701b0f552aa4/compiler/src/jdk.internal.vm.compiler/src/org/graalvm/compiler/nodes/calc/MulNode.java#L129-L171

List of Code Snippets

1 Example of simple if clause [5] . 4

2 Exemplary code representing a vectorized map calculation 9

3 Calculating the sum of all elements in an array 10

4 Counting the number of non null elements in an array 10

5 Calculating a simple hash code . 10

6 Fold loop containing arithmetic not on the accumulator path 11

7 Demonstration of �oating point rounding error incurred by vectorization . 15

8 The method body of the method Arrays#hashCode(int[] a) taken from

the Java Standard Library . 16

9 Vectorized hash like computation . 20

10 Canonicalization of a multiplication . 21

11 Fold loop containing a subtraction . 26

12 Vectorized fold loop containing a subtraction 27

13 Accumulator path traversing the right input edge of a subtraction 27

14 Hash code like computation using shift and XOR 34

List of De�nitions

1 De�nition (Non-associative Ring with Identity) 12

2 De�nition (Subring) . 13

List of Figures

1 IR of the code from listing 1 . 4

2 Add packed double-word integers from XMM0, XMM1 and store in XMM2 7

3 Vectorized sum calculation . 11

4 Diagram of the loop body of listing 6 . 12

5 Previous method of vectorizing hash code like loops 17

6 Illustration of the vector loop . 19

7 Possible shapes of a multiplication with a constant 22

8 Accumulator path of the loop in listing 13 28

9 Hash code benchmark with small int[] 32

10 Hash code benchmark with large int[] 33

11 Benchmark for hash code like loop presented in listing 14 34

39

List of Tables

1 Logic table for XOR . 23

2 Logic table for OR . 24

40

	Introduction
	Background
	GraalVM
	A Java Virtual Machine
	Graal Intermediate Representation

	Parallelization
	Free Lunch is Over
	Task-Parallel Programming
	Data Parallelism

	Single Instruction Multiple Data
	Intel Advanced Vector Instructions
	Automatic Vectorization
	Linear-Code Vectorization
	Loop Vectorization

	Fold Loops
	Fold Loop Patterns
	Accumulator Path
	Non-associative Rings with Identity
	Integers
	Floating Point Numbers

	Vectorizing Mixed Arithmetic Fold Loops
	Hash Code Like Loops
	Previous State
	Improving the Vectorization of Hash Code Like Loops
	Generalizing Hash Code Loops
	Detecting Arbitrary Multipliers
	Shifts and XORs
	Shifts and ORs

	Subtractions in Fold Loops
	Problem Statement
	Basic Idea
	Accumulator Path Restriction
	Lifting the Accumulator Path Restriction
	Vectorizing Arbitrary Add-Sub-Patterns

	Subtractions in Hash Code Like Loops

	Evaluation
	Sunk multiplication
	Generalized hash code like loops

	Conclusion

